|
@@ -0,0 +1,96 @@
|
|
|
|
+#!/usr/bin/env python
|
|
|
|
+# -*- coding:utf-8 -*-
|
|
|
|
+
|
|
|
|
+"""
|
|
|
|
+在split_data.py文件中放入以下代码并运行,这个文件是划分训练、验证、测试集。其中支持修改train_percent、val_percent、test_percent,改变训练集、验证集和测试集比例
|
|
|
|
+"""
|
|
|
|
+# 将图片和标注数据按比例切分为 训练集和测试集
|
|
|
|
+import shutil
|
|
|
|
+import random
|
|
|
|
+import os
|
|
|
|
+import argparse
|
|
|
|
+
|
|
|
|
+# 检查文件夹是否存在
|
|
|
|
+def mkdir(path):
|
|
|
|
+ if not os.path.exists(path):
|
|
|
|
+ os.makedirs(path)
|
|
|
|
+
|
|
|
|
+def main(image_dir, txt_dir, save_dir):
|
|
|
|
+ # 创建文件夹
|
|
|
|
+ mkdir(save_dir)
|
|
|
|
+ images_dir = os.path.join(save_dir, 'images')
|
|
|
|
+ labels_dir = os.path.join(save_dir, 'labels')
|
|
|
|
+
|
|
|
|
+ img_train_path = os.path.join(images_dir, 'train')
|
|
|
|
+ img_test_path = os.path.join(images_dir, 'test')
|
|
|
|
+ img_val_path = os.path.join(images_dir, 'val')
|
|
|
|
+
|
|
|
|
+ label_train_path = os.path.join(labels_dir, 'train')
|
|
|
|
+ label_test_path = os.path.join(labels_dir, 'test')
|
|
|
|
+ label_val_path = os.path.join(labels_dir, 'val')
|
|
|
|
+
|
|
|
|
+ mkdir(images_dir);
|
|
|
|
+ mkdir(labels_dir);
|
|
|
|
+ mkdir(img_train_path);
|
|
|
|
+ mkdir(img_test_path);
|
|
|
|
+ mkdir(img_val_path);
|
|
|
|
+ mkdir(label_train_path);
|
|
|
|
+ mkdir(label_test_path);
|
|
|
|
+ mkdir(label_val_path);
|
|
|
|
+
|
|
|
|
+ # 数据集划分比例,训练集80%,验证集10%,测试集10%,按需修改
|
|
|
|
+ train_percent = 0.8
|
|
|
|
+ val_percent = 0.1
|
|
|
|
+ test_percent = 0.1
|
|
|
|
+
|
|
|
|
+ total_txt = os.listdir(txt_dir)
|
|
|
|
+ num_txt = len(total_txt)
|
|
|
|
+ list_all_txt = range(num_txt) # 范围 range(0, num)
|
|
|
|
+
|
|
|
|
+ num_train = int(num_txt * train_percent)
|
|
|
|
+ num_val = int(num_txt * val_percent)
|
|
|
|
+ num_test = num_txt - num_train - num_val
|
|
|
|
+
|
|
|
|
+ train = random.sample(list_all_txt, num_train)
|
|
|
|
+ # 在全部数据集中取出train
|
|
|
|
+ val_test = [i for i in list_all_txt if not i in train]
|
|
|
|
+ # 再从val_test取出num_val个元素,val_test剩下的元素就是test
|
|
|
|
+ val = random.sample(val_test, num_val)
|
|
|
|
+
|
|
|
|
+ print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
|
|
|
|
+ for i in list_all_txt:
|
|
|
|
+ name = total_txt[i][:-4]
|
|
|
|
+
|
|
|
|
+ srcImage = os.path.join(image_dir, name + '.jpg')
|
|
|
|
+ srcLabel = os.path.join(txt_dir, name + '.txt')
|
|
|
|
+
|
|
|
|
+ if i in train:
|
|
|
|
+ dst_train_Image = os.path.join(img_train_path, name + '.jpg')
|
|
|
|
+ dst_train_Label = os.path.join(label_train_path, name + '.txt')
|
|
|
|
+ shutil.copyfile(srcImage, dst_train_Image)
|
|
|
|
+ shutil.copyfile(srcLabel, dst_train_Label)
|
|
|
|
+ elif i in val:
|
|
|
|
+ dst_val_Image = os.path.join(img_val_path, name + '.jpg')
|
|
|
|
+ dst_val_Label = os.path.join(label_val_path, name + '.txt')
|
|
|
|
+ shutil.copyfile(srcImage, dst_val_Image)
|
|
|
|
+ shutil.copyfile(srcLabel, dst_val_Label)
|
|
|
|
+ else:
|
|
|
|
+ dst_test_Image = os.path.join(img_test_path, name + '.jpg')
|
|
|
|
+ dst_test_Label = os.path.join(label_test_path, name + '.txt')
|
|
|
|
+ shutil.copyfile(srcImage, dst_test_Image)
|
|
|
|
+ shutil.copyfile(srcLabel, dst_test_Label)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ """
|
|
|
|
+ python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data
|
|
|
|
+ """
|
|
|
|
+ parser = argparse.ArgumentParser(description='split datasets to train,val,test params')
|
|
|
|
+ parser.add_argument('--image-dir', type=str, default=r"VOCdevkit\images", help='image path dir')
|
|
|
|
+ parser.add_argument('--txt-dir', type=str, default=r"VOCdevkit\txt", help='txt path dir')
|
|
|
|
+ parser.add_argument('--save-dir', default=r"VOCdevkit\datsets", type=str, help='save dir')
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+ image_dir = args.image_dir
|
|
|
|
+ txt_dir = args.txt_dir
|
|
|
|
+ save_dir = args.save_dir
|
|
|
|
+ main(image_dir, txt_dir, save_dir)
|