## YOLO标注工具 YOLO 提供默认的标注工具: ```shell pip install labelimg ``` 安装后,执行 `labelimg` 打开标注工具。 ![labelimg](images/labelimg.png) 数据集和标签选择: ![数据集和标签](images/label-image-labels.png) ## 自定义数据集 自定义数据集再 datasets 下创建指定的数据集和名称。 ```log . |____datasets | |____coco128 | | |____LICENSE | | |____images | | | |____train2017 | | | | |____000000000009.jpg | | | | |____000000000025.jpg | | |____labels | | | |____train2017.cache | | | |____train2017 | | | | |____000000000009.txt | | | | |____000000000025.txt ``` 再 datasets 下创建 `coco128.yaml` 文件,内容如下: ```yml path: /path/coco128 train: images/train2017 val: images/train2017 nc: 80 names: [person, bicycle, car, motorcycle, airplane, bus, ...] ``` 或 ```yml names: 0: 'person' 1: 'bicycle' 2: 'car' 3: 'motorcycle' 4: 'airplane' 5: 'bus' nc: 6 train: /path/train val: /path/val ``` ## 参考 - [如何使用YOLOv8训练自己的模型和进行预测](https://www.cnblogs.com/qqsj/p/17492360.html) - [Yolo V5标注图片](https://blog.csdn.net/geji001/article/details/133896362) - [目标检测VOC格式标注转YOLO标注](https://blog.csdn.net/qq_46300009/article/details/136074559) - [利用YOLO标注并训练自己的数据集](https://blog.csdn.net/qq_54452082/article/details/137070072) - [使用labelimg对YOLO数据进行标注](https://blog.csdn.net/qq_41940277/article/details/136302943)