## YOLO 采用命令训练数据集 ```shell yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 yolo task=detect mode=train model=yolov8x.yaml data=mydata.yaml epochs=10 batch=16 yolo task=segment mode=predict model=yolov8x-seg.pt source='/kaggle/input/personpng/1.jpg' ``` 以上参数解释如下: - task:选择任务类型,可选['detect', 'segment', 'classify', 'init'] - mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict'] - model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yam - data: 选择生成的数据集配置文件 - epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。 - batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。 实际运行: ```shell yolo train data=/home/jxft/datasets/hyd-action.yaml model=/home/jxft/datasets/yolov8/yolov8n.pt epochs=100 lr0=0.01 ``` ## YOLO 采用代码测试数据集 ```python from ultralytics import YOLO # Create a new YOLO model from scratch model = YOLO('yolov8n.yaml') # Load a pretrained YOLO model (recommended for training) model = YOLO('yolov8n.pt') # Train the model using the 'coco128.yaml' dataset for 3 epochs results = model.train(data='coco128.yaml', epochs=3) # Evaluate the model's performance on the validation set results = model.val() # Perform object detection on an image using the model results = model('https://ultralytics.com/images/bus.jpg') # Export the model to ONNX format success = model.export(format='onnx') ``` 训练参数: ```python workers = 1 batch = 8 data_name = "TrafficSign" model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect') # 加载预训练的YOLOv8模型 results = model.train( # 开始训练模型 data=data_path, # 指定训练数据的配置文件路径 device='cpu', # 指定使用CPU进行训练 workers=workers, # 指定使用2个工作进程加载数据 imgsz=640, # 指定输入图像的大小为640x640 epochs=100, # 指定训练100个epoch batch=batch, # 指定每个批次的大小为8 name='train_v5_' + data_name # 指定训练任务的名称 ) ``` ## 参考 - https://blog.csdn.net/qq_32892383/article/details/136505299 - https://blog.csdn.net/wzk4869/article/details/131608489 - https://www.cnblogs.com/lgwdx/p/16527890.html