## 采用命令 ```shell yolo predict model=yolov8n.pt source=/path/钢绳/人船.jpg ``` 输出: ```log Ultralytics YOLOv8.2.48 🚀 Python-3.8.10 torch-1.13.1 CPU (Intel Core(TM) i9-9880H 2.30GHz) YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs image 1/1 /path/钢绳/人船.jpg: 448x640 1 person, 1 boat, 165.1ms Speed: 8.1ms preprocess, 165.1ms inference, 15.0ms postprocess per image at shape (1, 3, 448, 640) Results saved to runs/detect/predict3 💡 Learn more at https://docs.ultralytics.com/modes/predict ``` ## YOLO 模型导出 ONNX 采用 yolo 导出为 onnx 格式。 ```shell yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 yolo export model=water_strean_model.pt format=onnx \ --iou-thres 0.65 --conf-thres 0.25 --topk 100 --opset 16 \ --sim --input-shape 1 3 640 640 python export-det.py --weights water_strean_model.pt \ --iou-thres 0.65 --conf-thres 0.25 \ --topk 100 --opset 16 --sim --input-shape 1 3 640 640 --device "0" python export-det.py --weights water_strean_model.pt \ --iou-thres 0.65 --conf-thres 0.25 \ --topk 100 --opset 16 --sim --input-shape 1 3 640 640 --device cpu ``` **注意:** (最新的yolo8改用默认GPU版的onnxruntime,要安装一下下面的库,否则ONNX转换会有警告) pip install onnxruntime-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple