123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- import time
- import cv2
- import numpy as np
- import onnxruntime
- class YOLOv8:
- def __init__(self, path, conf_thres=0.7, iou_thres=0.7):
- self.conf_threshold = conf_thres
- self.iou_threshold = iou_thres
- # Initialize model
- self.initialize_model(path)
- def __call__(self, image):
- return self.detect_objects(image)
- def initialize_model(self, path):
- self.session = onnxruntime.InferenceSession(path,providers=['CUDAExecutionProvider','CPUExecutionProvider'])
- # Get model info
- self.get_input_details()
- self.get_output_details()
- def detect_objects(self, image):
- input_tensor,ratio = self.prepare_input(image)
- # Perform inference on the image
- outputs = self.inference(input_tensor)
- self.boxes, self.scores, self.class_ids = self.process_output(outputs,ratio)
- return self.boxes, self.scores, self.class_ids
- def prepare_input(self, image):
- self.img_height, self.img_width = image.shape[:2]
- input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # Resize图片不要直接使用resize,需要按比例缩放,空白区域填空纯色即可
- input_img,ratio = self.ratioresize(input_img)
- # Scale input pixel values to 0 to 1
- input_img = input_img / 255.0
- input_img = input_img.transpose(2, 0, 1)
- input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
- return input_tensor,ratio
- def inference(self, input_tensor):
- start = time.perf_counter()
- outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
- # print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
- return outputs
- def process_output(self, output,ratio):
- predictions = np.squeeze(output[0]).T
- # Filter out object confidence scores below threshold
- scores = np.max(predictions[:, 4:], axis=1)
- predictions = predictions[scores > self.conf_threshold, :]
- scores = scores[scores > self.conf_threshold]
- if len(scores) == 0:
- return [], [], []
- # Get the class with the highest confidence
- class_ids = np.argmax(predictions[:, 4:], axis=1)
- # Get bounding boxes for each object
- boxes = self.extract_boxes(predictions,ratio)
- # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
- indices = self.nms(boxes, scores, self.iou_threshold)
- return boxes[indices], scores[indices], class_ids[indices]
- def extract_boxes(self, predictions,ratio):
- # Extract boxes from predictions
- boxes = predictions[:, :4]
- # Scale boxes to original image dimensions
- # boxes = self.rescale_boxes(boxes)
- boxes *= ratio
- # Convert boxes to xyxy format
- boxes = self.xywh2xyxy(boxes)
- return boxes
- def rescale_boxes(self, boxes):
- # Rescale boxes to original image dimensions
-
- input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
- boxes = np.divide(boxes, input_shape, dtype=np.float32)
- boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
-
- return boxes
- def get_input_details(self):
- model_inputs = self.session.get_inputs()
- self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
- self.input_shape = model_inputs[0].shape
- self.input_height = self.input_shape[2]
- self.input_width = self.input_shape[3]
- def get_output_details(self):
- model_outputs = self.session.get_outputs()
- self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
- #等比例缩放图片
- def ratioresize(self,im, color=114):
- shape = im.shape[:2]
- new_h, new_w = self.input_height, self.input_width
- padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color
-
- # Scale ratio (new / old)
- r = min(new_h / shape[0], new_w / shape[1])
-
- # Compute padding
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
-
- if shape[::-1] != new_unpad:
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
-
- padded_img[: new_unpad[1], : new_unpad[0]] = im
- padded_img = np.ascontiguousarray(padded_img)
- return padded_img, 1 / r
- def nms(self, boxes, scores, iou_threshold):
- # Sort by score
- sorted_indices = np.argsort(scores)[::-1]
-
- keep_boxes = []
- while sorted_indices.size > 0:
- # Pick the last box
- box_id = sorted_indices[0]
- keep_boxes.append(box_id)
-
- # Compute IoU of the picked box with the rest
- ious = self.compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
-
- # Remove boxes with IoU over the threshold
- keep_indices = np.where(ious < iou_threshold)[0]
-
- # print(keep_indices.shape, sorted_indices.shape)
- sorted_indices = sorted_indices[keep_indices + 1]
-
- return keep_boxes
-
- def compute_iou(self, box, boxes):
- # Compute xmin, ymin, xmax, ymax for both boxes
- xmin = np.maximum(box[0], boxes[:, 0])
- ymin = np.maximum(box[1], boxes[:, 1])
- xmax = np.minimum(box[2], boxes[:, 2])
- ymax = np.minimum(box[3], boxes[:, 3])
-
- # Compute intersection area
- intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
-
- # Compute union area
- box_area = (box[2] - box[0]) * (box[3] - box[1])
- boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
- union_area = box_area + boxes_area - intersection_area
-
- # Compute IoU
- iou = intersection_area / union_area
-
- return iou
-
- def xywh2xyxy(self, x):
- # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
- y = np.copy(x)
- y[..., 0] = x[..., 0] - x[..., 2] / 2
- y[..., 1] = x[..., 1] - x[..., 3] / 2
- y[..., 2] = x[..., 0] + x[..., 2] / 2
- y[..., 3] = x[..., 1] + x[..., 3] / 2
- return y
- if __name__ == "__main__":
- yolov8_detector = YOLOv8(model_path, conf_thres=0.7, iou_thres=0.7)
- image = cv2.imread()
- boxes, scores, class_ids = yolov8_detector(image)
- print(boxes, scores, class_ids)
|