123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- """
- 在split_data.py文件中放入以下代码并运行,这个文件是划分训练、验证、测试集。其中支持修改train_percent、val_percent、test_percent,改变训练集、验证集和测试集比例
- """
- # 将图片和标注数据按比例切分为 训练集和测试集
- import shutil
- import random
- import os
- import argparse
- # 检查文件夹是否存在
- def mkdir(path):
- if not os.path.exists(path):
- os.makedirs(path)
- def main(image_dir, txt_dir, save_dir):
- # 创建文件夹
- mkdir(save_dir)
- images_dir = os.path.join(save_dir, 'images')
- labels_dir = os.path.join(save_dir, 'labels')
- img_train_path = os.path.join(images_dir, 'train')
- img_test_path = os.path.join(images_dir, 'test')
- img_val_path = os.path.join(images_dir, 'val')
- label_train_path = os.path.join(labels_dir, 'train')
- label_test_path = os.path.join(labels_dir, 'test')
- label_val_path = os.path.join(labels_dir, 'val')
- mkdir(images_dir);
- mkdir(labels_dir);
- mkdir(img_train_path);
- mkdir(img_test_path);
- mkdir(img_val_path);
- mkdir(label_train_path);
- mkdir(label_test_path);
- mkdir(label_val_path);
- # 数据集划分比例,训练集80%,验证集10%,测试集10%,按需修改
- train_percent = 0.8
- val_percent = 0.1
- test_percent = 0.1
- total_txt = os.listdir(txt_dir)
- num_txt = len(total_txt)
- list_all_txt = range(num_txt) # 范围 range(0, num)
- num_train = int(num_txt * train_percent)
- num_val = int(num_txt * val_percent)
- num_test = num_txt - num_train - num_val
- train = random.sample(list_all_txt, num_train)
- # 在全部数据集中取出train
- val_test = [i for i in list_all_txt if not i in train]
- # 再从val_test取出num_val个元素,val_test剩下的元素就是test
- val = random.sample(val_test, num_val)
- print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
- for i in list_all_txt:
- name = total_txt[i][:-4]
- srcImage = os.path.join(image_dir, name + '.jpg')
- srcLabel = os.path.join(txt_dir, name + '.txt')
- if i in train:
- dst_train_Image = os.path.join(img_train_path, name + '.jpg')
- dst_train_Label = os.path.join(label_train_path, name + '.txt')
- shutil.copyfile(srcImage, dst_train_Image)
- shutil.copyfile(srcLabel, dst_train_Label)
- elif i in val:
- dst_val_Image = os.path.join(img_val_path, name + '.jpg')
- dst_val_Label = os.path.join(label_val_path, name + '.txt')
- shutil.copyfile(srcImage, dst_val_Image)
- shutil.copyfile(srcLabel, dst_val_Label)
- else:
- dst_test_Image = os.path.join(img_test_path, name + '.jpg')
- dst_test_Label = os.path.join(label_test_path, name + '.txt')
- shutil.copyfile(srcImage, dst_test_Image)
- shutil.copyfile(srcLabel, dst_test_Label)
- if __name__ == '__main__':
- """
- python split_datasets.py --image-dir my_datasets/color_rings/imgs --txt-dir my_datasets/color_rings/txts --save-dir my_datasets/color_rings/train_data
- """
- parser = argparse.ArgumentParser(description='split datasets to train,val,test params')
- parser.add_argument('--image-dir', type=str, default=r"VOCdevkit\images", help='image path dir')
- parser.add_argument('--txt-dir', type=str, default=r"VOCdevkit\txt", help='txt path dir')
- parser.add_argument('--save-dir', default=r"VOCdevkit\datsets", type=str, help='save dir')
- args = parser.parse_args()
- image_dir = args.image_dir
- txt_dir = args.txt_dir
- save_dir = args.save_dir
- main(image_dir, txt_dir, save_dir)
|