/****************************************************************************** * * Copyright(c) 2016 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTL8821C_PHY_C_ #include /* HAL_DATA_TYPE */ #include "../hal_halmac.h" /* REG_CCK_CHECK_8821C */ #include "rtl8821c.h" /* * Description: * Initialize Register definition offset for Radio Path A/B/C/D * The initialization value is constant and it should never be changes */ static void bb_rf_register_definition(PADAPTER adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); /* RF Interface Sowrtware Control */ hal->PHYRegDef[ODM_RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; hal->PHYRegDef[ODM_RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* RF Interface Output (and Enable) */ hal->PHYRegDef[ODM_RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; hal->PHYRegDef[ODM_RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* RF Interface (Output and) Enable */ hal->PHYRegDef[ODM_RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; hal->PHYRegDef[ODM_RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; hal->PHYRegDef[ODM_RF_PATH_A].rf3wireOffset = rA_LSSIWrite_Jaguar; hal->PHYRegDef[ODM_RF_PATH_B].rf3wireOffset = rB_LSSIWrite_Jaguar; hal->PHYRegDef[ODM_RF_PATH_A].rfHSSIPara2 = rHSSIRead_Jaguar; hal->PHYRegDef[ODM_RF_PATH_B].rfHSSIPara2 = rHSSIRead_Jaguar; /* Tranceiver Readback LSSI/HSPI mode */ hal->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBack = rA_SIRead_Jaguar; hal->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBack = rB_SIRead_Jaguar; hal->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBackPi = rA_PIRead_Jaguar; hal->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBackPi = rB_PIRead_Jaguar; } static void init_bb_rf(PADAPTER adapter) { u8 val8; u16 val16; /* Enable BB and RF */ val8 = rtw_read8(adapter, REG_SYS_FUNC_EN_8821C); if (IS_HARDWARE_TYPE_8821CU(adapter)) val8 |= BIT_FEN_USBA_8821C; else if (IS_HARDWARE_TYPE_8821CE(adapter)) val8 |= BIT_FEN_PCIEA_8821C; rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8); /* * 8821C MP Chip => Reset BB/RF ?? * Need to set BBRSTB and GLB_RSTB = 1->0->1 to generate a postive edge and negtive edge for BB */ val8 |= BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C; rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8); val8 &= ~(BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C); rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8); val8 |= BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C; rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8); val8 = BIT_RF_EN_8821C | BIT_RF_RSTB_8821C | BIT_RF_SDMRSTB_8821C; /* 0x1F[7:0] = 0x07 PathA RF Power On */ rtw_write8(adapter, REG_RF_CTRL_8821C, val8); rtw_usleep_os(10); /*0xEC [31:24],BIT_WLRF1_CTRL, For WLRF1 control*/ /* 0xEF[7:0] = 0x07 for RFE Type=2,BTG RF Power On*/ rtw_write8(adapter, REG_WLRF1_8821C + 3, val8); rtw_usleep_os(10); } u8 rtl8821c_init_phy_parameter_mac(PADAPTER adapter) { u8 ret = _FAIL; PHAL_DATA_TYPE hal; hal = GET_HAL_DATA(adapter); #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE ret = phy_ConfigMACWithParaFile(adapter, PHY_FILE_MAC_REG); if (ret == _FAIL) #endif /* CONFIG_LOAD_PHY_PARA_FROM_FILE */ { odm_config_mac_with_header_file(&hal->odmpriv); ret = _SUCCESS; } return ret; } static u8 _init_phy_parameter_bb(PADAPTER Adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(Adapter); u8 ret = _TRUE; int res; enum hal_status status; /* * 1. Read PHY_REG.TXT BB INIT!! */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (ret != _TRUE) { RTW_INFO("%s: Write BB Reg Fail!!", __FUNCTION__); goto exit; } #if 0 /* def CONFIG_MP_INCLUDED */ /* No parameter with MP using currently by BB@Stanley.*/ if (Adapter->registrypriv.mp_mode == 1) { /* * 1.1 Read PHY_REG_MP.TXT BB INIT!! */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG_MP); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (ret != _TRUE) { RTW_INFO("%s : Write BB Reg MP Fail!!", __FUNCTION__); goto exit; } } #endif /* CONFIG_MP_INCLUDED */ /* * 2. Read BB AGC table Initialization */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_AGC_TAB); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (ret != _TRUE) { RTW_INFO("%s: AGC Table Fail\n", __FUNCTION__); goto exit; } exit: return ret; } static u8 init_bb_reg(PADAPTER adapter) { u8 ret = _TRUE; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); /* * Config BB and AGC */ ret = _init_phy_parameter_bb(adapter); hal_set_crystal_cap(adapter, hal->crystal_cap); phy_set_bb_reg(adapter, rCCK0_FalseAlarmReport + 2, BIT2 | BIT6, 0); return ret; } static u8 _init_phy_parameter_rf(PADAPTER adapter) { u32 val32 = 0; u8 eRFPath; PBB_REGISTER_DEFINITION_T pPhyReg; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); enum hal_status status; int res; u8 ret = _TRUE; /* * Initialize RF */ for (eRFPath = 0; eRFPath < hal->NumTotalRFPath; eRFPath++) { pPhyReg = &hal->PHYRegDef[eRFPath]; /* Initialize RF from configuration file */ switch (eRFPath) { case RF_PATH_A: #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = PHY_ConfigRFWithParaFile(adapter, PHY_FILE_RADIO_A, eRFPath); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_rf_with_header_file(&hal->odmpriv, CONFIG_RF_RADIO, (enum odm_rf_radio_path_e)eRFPath); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } break; case RF_PATH_B: #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = PHY_ConfigRFWithParaFile(adapter, PHY_FILE_RADIO_B, eRFPath); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_rf_with_header_file(&hal->odmpriv, CONFIG_RF_RADIO, (enum odm_rf_radio_path_e)eRFPath); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } break; case RF_PATH_C: break; case RF_PATH_D: break; } if (ret != _TRUE) goto exit; } /* * Configuration of Tx Power Tracking */ #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE res = PHY_ConfigRFWithTxPwrTrackParaFile(adapter, PHY_FILE_TXPWR_TRACK); if (res == _FAIL) #endif { ret = _FALSE; status = odm_config_rf_with_tx_pwr_track_header_file(&hal->odmpriv); if (HAL_STATUS_SUCCESS == status) ret = _TRUE; } if (ret != _TRUE) goto exit; exit: return ret; } static u8 init_rf_reg(PADAPTER adapter) { u8 ret = _TRUE; ret = _init_phy_parameter_rf(adapter); return ret; } u8 rtl8821c_phy_init(PADAPTER adapter) { PHAL_DATA_TYPE hal; struct PHY_DM_STRUCT *phydm; hal = GET_HAL_DATA(adapter); phydm = &hal->odmpriv; bb_rf_register_definition(adapter); init_bb_rf(adapter); if (_FALSE == config_phydm_parameter_init_8821c(phydm, ODM_PRE_SETTING)) return _FALSE; if (_FALSE == init_bb_reg(adapter)) return _FALSE; if (_FALSE == init_rf_reg(adapter)) return _FALSE; #if 0 if (_FALSE = config_phydm_trx_mode_8821c(phydm, ODM_RF_A, ODM_RF_A, FALSE)) return _FALSE; #endif if (_FALSE == config_phydm_parameter_init_8821c(phydm, ODM_POST_SETTING)) return _FALSE; hal->phy_spec.trx_cap = query_phydm_trx_capability(phydm); hal->phy_spec.stbc_cap = query_phydm_stbc_capability(phydm); hal->phy_spec.ldpc_cap = query_phydm_ldpc_capability(phydm); hal->phy_spec.txbf_param = query_phydm_txbf_parameters(phydm); hal->phy_spec.txbf_cap = query_phydm_txbf_capability(phydm); /*rtw_dump_phy_cap(RTW_DBGDUMP, adapter);*/ return _TRUE; } static u32 phy_calculatebitshift(u32 mask) { u32 i; for (i = 0; i <= 31; i++) if (mask & BIT(i)) break; return i; } u32 rtl8821c_read_bb_reg(PADAPTER adapter, u32 addr, u32 mask) { u32 val = 0, val_org, shift; #if (DISABLE_BB_RF == 1) return 0; #endif val_org = rtw_read32(adapter, addr); shift = phy_calculatebitshift(mask); val = (val_org & mask) >> shift; return val; } void rtl8821c_write_bb_reg(PADAPTER adapter, u32 addr, u32 mask, u32 val) { u32 val_org, shift; #if (DISABLE_BB_RF == 1) return; #endif if (mask != 0xFFFFFFFF) { /* not "double word" write */ val_org = rtw_read32(adapter, addr); shift = phy_calculatebitshift(mask); val = ((val_org & (~mask)) | ((val << shift) & mask)); } rtw_write32(adapter, addr, val); } u32 rtl8821c_read_rf_reg(PADAPTER adapter, u8 path, u32 addr, u32 mask) { PHAL_DATA_TYPE hal; struct PHY_DM_STRUCT *phydm; u32 val = 0; hal = GET_HAL_DATA(adapter); phydm = &hal->odmpriv; val = config_phydm_read_rf_reg_8821c(phydm, path, addr, mask); if (!config_phydm_read_rf_check_8821c(val)) RTW_INFO(FUNC_ADPT_FMT ": read RF reg path=%d addr=0x%x mask=0x%x FAIL!\n", FUNC_ADPT_ARG(adapter), path, addr, mask); return val; } void rtl8821c_write_rf_reg(PADAPTER adapter, u8 path, u32 addr, u32 mask, u32 val) { PHAL_DATA_TYPE hal; struct PHY_DM_STRUCT *phydm; u8 ret; hal = GET_HAL_DATA(adapter); phydm = &hal->odmpriv; ret = config_phydm_write_rf_reg_8821c(phydm, path, addr, mask, val); if (_FALSE == ret) RTW_INFO(FUNC_ADPT_FMT ": write RF reg path=%d addr=0x%x mask=0x%x val=0x%x FAIL!\n", FUNC_ADPT_ARG(adapter), path, addr, mask, val); } void rtl8821c_set_tx_power_level(PADAPTER adapter, u8 channel) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); u8 path = ODM_RF_PATH_A; struct PHY_DM_STRUCT *phydm = &hal->odmpriv; struct _FAST_ANTENNA_TRAINNING_ *pDM_FatTable = &phydm->dm_fat_table; /*((hal->RFEType == 2) || (hal->RFEType == 4) || (hal->RFEType == 7))*/ if ((channel <= 14) && (SWITCH_TO_BTG == query_phydm_default_rf_set_8821c(phydm))) path = ODM_RF_PATH_B; /*if (adapter->registrypriv.mp_mode == 1)*/ phy_set_tx_power_index_by_rate_section(adapter, path, channel, CCK); phy_set_tx_power_index_by_rate_section(adapter, path, channel, OFDM); phy_set_tx_power_index_by_rate_section(adapter, path, channel, HT_MCS0_MCS7); phy_set_tx_power_index_by_rate_section(adapter, path, channel, VHT_1SSMCS0_1SSMCS9); } void rtl8821c_get_tx_power_level(PADAPTER adapter, s32 *power) { } /* * Parameters: * padatper * powerindex power index for rate * rfpath Antenna(RF) path, type "enum odm_rf_radio_path_e" * rate data rate, type "enum MGN_RATE" */ /*#define DBG_SET_TX_POWER_IDX*/ void rtl8821c_set_tx_power_index(PADAPTER adapter, u32 powerindex, u8 rfpath, u8 rate) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *phydm = &hal->odmpriv; u8 shift = 0; u8 hw_rate_idx; static u32 index = 0; /*hw_rate_idx = PHY_GetRateIndexOfTxPowerByRate(rate);*/ hw_rate_idx = MRateToHwRate(rate); if (hw_rate_idx > DESC_RATEVHTSS1MCS9) { RTW_ERR(FUNC_ADPT_FMT"warn rate(%s)\n", FUNC_ADPT_ARG(adapter), HDATA_RATE(hw_rate_idx)); rtw_warn_on(1); } if (rfpath > ODM_RF_PATH_A) { #ifdef DBG_SET_TX_POWER_IDX RTW_INFO(FUNC_ADPT_FMT" rfpath(%d) power index to ODM_RF_PATH_A\n", FUNC_ADPT_ARG(adapter), rfpath); #endif rfpath = ODM_RF_PATH_A; } /* * For 8821C, phydm api use 4 bytes txagc value * driver must combine every four 1 byte to one 4 byte and send to phydm api */ shift = hw_rate_idx % 4; index |= ((powerindex & 0xff) << (shift * 8)); if (shift == 3) { hw_rate_idx = hw_rate_idx - 3; if (!config_phydm_write_txagc_8821c(phydm, index, rfpath, hw_rate_idx)) { RTW_ERR(FUNC_ADPT_FMT" (power index:0x%02x, rfpath:%d, rate:0x%02x, disable api:%d) wite TX-AGC failed\n", FUNC_ADPT_ARG(adapter), index, rfpath, hw_rate_idx, phydm->is_disable_phy_api); rtw_warn_on(1); } #ifdef DBG_SET_TX_POWER_IDX RTW_INFO(FUNC_ADPT_FMT"Rate:%s ,tx_power_idx: 0x%08x\n", FUNC_ADPT_ARG(adapter), HDATA_RATE(hw_rate_idx), index); #endif index = 0; } if (MGN_VHT1SS_MCS9 == rate) { if (!config_phydm_write_txagc_8821c(phydm, index, rfpath, MRateToHwRate(MGN_VHT1SS_MCS8))) { RTW_ERR(FUNC_ADPT_FMT" (power index:0x%02x, rfpath:%d, rate:0x%02x, disable api:%d) wite TX-AGC failed\n", FUNC_ADPT_ARG(adapter), index, rfpath, hw_rate_idx, phydm->is_disable_phy_api); rtw_warn_on(1); } #ifdef DBG_SET_TX_POWER_IDX RTW_INFO(FUNC_ADPT_FMT"-Rate:%s ,tx_power_idx: 0x%08x\n", FUNC_ADPT_ARG(adapter), HDATA_RATE(MRateToHwRate(MGN_VHT1SS_MCS8)), index); #endif index = 0; } } static u8 rtl8821c_phy_get_current_tx_num(PADAPTER adapter, u8 rate) { u8 tx_num = 0; if ((rate >= MGN_MCS8 && rate <= MGN_MCS15) || (rate >= MGN_VHT2SS_MCS0 && rate <= MGN_VHT2SS_MCS9)) tx_num = RF_2TX; else tx_num = RF_1TX; return tx_num; } /* * Parameters: * padatper * rfpath Antenna(RF) path, type "enum odm_rf_radio_path_e" * rate data rate, type "enum MGN_RATE" * bandwidth Bandwidth, type "enum _CHANNEL_WIDTH" * channel Channel number * * Rteurn: * tx_power power index for rate */ u8 rtl8821c_get_tx_power_index(PADAPTER adapter, u8 rfpath, u8 rate, u8 bandwidth, u8 channel, struct txpwr_idx_comp *tic) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); u8 base_idx = 0, power_idx = 0; s8 by_rate_diff = 0, limit = 0, tpt_offset = 0, extra_bias = 0; u8 tx_num = rtl8821c_phy_get_current_tx_num(adapter, rate); u8 bIn24G = _FALSE; base_idx = PHY_GetTxPowerIndexBase(adapter, rfpath, rate, bandwidth, channel, &bIn24G); by_rate_diff = PHY_GetTxPowerByRate(adapter, (u8)(!bIn24G), rfpath, tx_num, rate); limit = PHY_GetTxPowerLimit(adapter, adapter->registrypriv.RegPwrTblSel, (BAND_TYPE)(!bIn24G), hal->current_channel_bw, rfpath, rate, hal->current_channel); /* tpt_offset += PHY_GetTxPowerTrackingOffset(adapter, rfpath, rate); */ if (tic) { tic->base = base_idx; tic->by_rate = by_rate_diff; tic->limit = limit; tic->tpt = tpt_offset; tic->ebias = extra_bias; } by_rate_diff = by_rate_diff > limit ? limit : by_rate_diff; power_idx = base_idx + by_rate_diff + tpt_offset + extra_bias; #if 0 #if CCX_SUPPORT CCX_CellPowerLimit(adapter, channel, rate, (pu1Byte)&power_idx); #endif #endif if (power_idx > MAX_POWER_INDEX) power_idx = MAX_POWER_INDEX; return power_idx; } /* * Description: * Check need to switch band or not * Parameters: * channelToSW channel wiii be switch to * Return: * _TRUE need to switch band * _FALSE not need to switch band */ static u8 need_switch_band(PADAPTER adapter, u8 channelToSW) { u8 u1tmp = 0; u8 ret_value = _TRUE; u8 Band = BAND_ON_5G, BandToSW = BAND_ON_5G; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); Band = hal->current_band_type; /* Use current swich channel to judge Band Type and switch Band if need */ if (channelToSW > 14) BandToSW = BAND_ON_5G; else BandToSW = BAND_ON_2_4G; if (BandToSW != Band) { /* record current band type for other hal use */ hal->current_band_type = (BAND_TYPE)BandToSW; ret_value = _TRUE; } else ret_value = _FALSE; return ret_value; } static u8 get_pri_ch_id(PADAPTER adapter) { u8 pri_ch_idx = 0; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); if (hal->current_channel_bw == CHANNEL_WIDTH_80) { /* primary channel is at lower subband of 80MHz & 40MHz */ if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) pri_ch_idx = VHT_DATA_SC_20_LOWEST_OF_80MHZ; /* primary channel is at lower subband of 80MHz & upper subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)) pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ; /* primary channel is at upper subband of 80MHz & lower subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ; /* primary channel is at upper subband of 80MHz & upper subband of 40MHz */ else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)) pri_ch_idx = VHT_DATA_SC_20_UPPERST_OF_80MHZ; else { if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) pri_ch_idx = VHT_DATA_SC_40_LOWER_OF_80MHZ; else if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) pri_ch_idx = VHT_DATA_SC_40_UPPER_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } } else if (hal->current_channel_bw == CHANNEL_WIDTH_40) { /* primary channel is at upper subband of 40MHz */ if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ; /* primary channel is at lower subband of 40MHz */ else if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ; else RTW_INFO("SCMapping: DONOT CARE Mode Setting\n"); } return pri_ch_idx; } static void mac_switch_bandwidth(PADAPTER adapter, u8 pri_ch_idx) { u8 channel = 0, bw = 0; PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); int err; channel = hal->current_channel; bw = hal->current_channel_bw; err = rtw_halmac_set_bandwidth(adapter_to_dvobj(adapter), channel, pri_ch_idx, bw); if (err) { RTW_INFO(FUNC_ADPT_FMT ": (channel=%d, pri_ch_idx=%d, bw=%d) fail\n", FUNC_ADPT_ARG(adapter), channel, pri_ch_idx, bw); } } u32 phy_get_tx_bbswing_8812c(_adapter *adapter, BAND_TYPE band, u8 rf_path) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; struct odm_rf_calibration_structure *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info); s8 bbSwing_2G = -1 * GetRegTxBBSwing_2G(adapter); s8 bbSwing_5G = -1 * GetRegTxBBSwing_5G(adapter); u32 out = 0x200; const s8 AUTO = -1; if (pHalData->bautoload_fail_flag) { if (band == BAND_ON_2_4G) { pRFCalibrateInfo->bb_swing_diff_2g = bbSwing_2G; if (bbSwing_2G == 0) out = 0x200; /* 0 dB */ else if (bbSwing_2G == -3) out = 0x16A; /* -3 dB */ else if (bbSwing_2G == -6) out = 0x101; /* -6 dB */ else if (bbSwing_2G == -9) out = 0x0B6; /* -9 dB */ else { if (pHalData->ExternalPA_2G) { pRFCalibrateInfo->bb_swing_diff_2g = -3; out = 0x16A; } else { pRFCalibrateInfo->bb_swing_diff_2g = 0; out = 0x200; } } } else if (band == BAND_ON_5G) { pRFCalibrateInfo->bb_swing_diff_5g = bbSwing_5G; if (bbSwing_5G == 0) out = 0x200; /* 0 dB */ else if (bbSwing_5G == -3) out = 0x16A; /* -3 dB */ else if (bbSwing_5G == -6) out = 0x101; /* -6 dB */ else if (bbSwing_5G == -9) out = 0x0B6; /* -9 dB */ else { if (pHalData->external_pa_5g) { pRFCalibrateInfo->bb_swing_diff_5g = -3; out = 0x16A; } else { pRFCalibrateInfo->bb_swing_diff_5g = 0; out = 0x200; } } } else { pRFCalibrateInfo->bb_swing_diff_2g = -3; pRFCalibrateInfo->bb_swing_diff_5g = -3; out = 0x16A; /* -3 dB */ } } else { u32 swing = 0, onePathSwing = 0; if (band == BAND_ON_2_4G) { if (GetRegTxBBSwing_2G(adapter) == AUTO) swing = pHalData->tx_bbswing_24G; else if (bbSwing_2G == 0) swing = 0x00; /* 0 dB */ else if (bbSwing_2G == -3) swing = 0x55; /* -3 dB */ else if (bbSwing_2G == -6) swing = 0xAA; /* -6 dB */ else if (bbSwing_2G == -9) swing = 0xFF; /* -9 dB */ else swing = 0x00; } else { if (GetRegTxBBSwing_5G(adapter) == AUTO) swing = pHalData->tx_bbswing_5G; else if (bbSwing_5G == 0) swing = 0x00; /* 0 dB */ else if (bbSwing_5G == -3) swing = 0x55; /* -3 dB */ else if (bbSwing_5G == -6) swing = 0xAA; /* -6 dB */ else if (bbSwing_5G == -9) swing = 0xFF; /* -9 dB */ else swing = 0x00; } if (rf_path == ODM_RF_PATH_A) onePathSwing = (swing & 0x3) >> 0; /* 0xC6/C7[1:0] */ if (onePathSwing == 0x0) { if (band == BAND_ON_2_4G) pRFCalibrateInfo->bb_swing_diff_2g = 0; else pRFCalibrateInfo->bb_swing_diff_5g = 0; out = 0x200; /* 0 dB */ } else if (onePathSwing == 0x1) { if (band == BAND_ON_2_4G) pRFCalibrateInfo->bb_swing_diff_2g = -3; else pRFCalibrateInfo->bb_swing_diff_5g = -3; out = 0x16A; /* -3 dB */ } else if (onePathSwing == 0x2) { if (band == BAND_ON_2_4G) pRFCalibrateInfo->bb_swing_diff_2g = -6; else pRFCalibrateInfo->bb_swing_diff_5g = -6; out = 0x101; /* -6 dB */ } else if (onePathSwing == 0x3) { if (band == BAND_ON_2_4G) pRFCalibrateInfo->bb_swing_diff_2g = -9; else pRFCalibrateInfo->bb_swing_diff_5g = -9; out = 0x0B6; /* -9 dB */ } } /* RTW_INFO("<=== PHY_GetTxBBSwing_8812C, out = 0x%X\n", out); */ return out; } void phy_set_bb_swing_by_band_8812c(_adapter *adapter, u8 band, u8 previous_band) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); s8 BBDiffBetweenBand = 0; struct PHY_DM_STRUCT *pDM_Odm = &pHalData->odmpriv; struct odm_rf_calibration_structure *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info); phy_set_bb_reg(adapter, rA_TxScale_Jaguar, 0xFFE00000, phy_get_tx_bbswing_8812c(adapter, (BAND_TYPE)band, ODM_RF_PATH_A)); /* 0xC1C[31:21] */ /* When TxPowerTrack is ON, we should take care of the change of BB swing. */ /* That is, reset all info to trigger Tx power tracking. */ { if (band != previous_band) { BBDiffBetweenBand = (pRFCalibrateInfo->bb_swing_diff_2g - pRFCalibrateInfo->bb_swing_diff_5g); BBDiffBetweenBand = (band == BAND_ON_2_4G) ? BBDiffBetweenBand : (-1 * BBDiffBetweenBand); pRFCalibrateInfo->default_ofdm_index += BBDiffBetweenBand * 2; } odm_clear_txpowertracking_state(pDM_Odm); } } void phy_switch_wireless_band_8821c(_adapter *adapter) { u8 ret = 0; PHAL_DATA_TYPE hal_data = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *pDM_Odm = &hal_data->odmpriv; u8 current_band = hal_data->current_band_type; if (need_switch_band(adapter, hal_data->current_channel) == _TRUE) { #ifdef CONFIG_BT_COEXIST if (hal_data->EEPROMBluetoothCoexist) { struct mlme_ext_priv *mlmeext; /* switch band under site survey or not, must notify to BT COEX */ mlmeext = &adapter->mlmeextpriv; if (mlmeext_scan_state(mlmeext) != SCAN_DISABLE) rtw_btcoex_switchband_notify(_TRUE, hal_data->current_band_type); else rtw_btcoex_switchband_notify(_FALSE, hal_data->current_band_type); } else rtw_btcoex_wifionly_switchband_notify(adapter); #else /* !CONFIG_BT_COEXIST */ rtw_btcoex_wifionly_switchband_notify(adapter); #endif /* CONFIG_BT_COEXIST */ /* hal->current_channel is center channel of pmlmeext->cur_channel(primary channel) */ ret = config_phydm_switch_band_8821c(pDM_Odm, hal_data->current_channel); if (!ret) { RTW_ERR("%s: config_phydm_switch_band_8821c fail\n", __func__); rtw_warn_on(1); return; } phy_set_bb_swing_by_band_8812c(adapter, hal_data->current_band_type, current_band); } } /* * Description: * Set channel & bandwidth & offset */ void rtl8821c_switch_chnl_and_set_bw(PADAPTER adapter) { PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter); struct PHY_DM_STRUCT *pDM_Odm = &hal->odmpriv; u8 center_ch = 0, ret = 0; if (adapter->bNotifyChannelChange) { RTW_INFO("[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n", __FUNCTION__, hal->bSwChnl, hal->current_channel, hal->bSetChnlBW, hal->current_channel_bw); } if (RTW_CANNOT_RUN(adapter)) { hal->bSwChnlAndSetBWInProgress = _FALSE; return; } /* set channel & Bandwidth register */ /* 1. set switch band register if need to switch band */ phy_switch_wireless_band_8821c(adapter); /* 2. set channel register */ if (hal->bSwChnl) { ret = config_phydm_switch_channel_8821c(pDM_Odm, hal->current_channel); hal->bSwChnl = _FALSE; if (!ret) { RTW_INFO("%s: config_phydm_switch_channel_8821c fail\n", __FUNCTION__); rtw_warn_on(1); return; } } phydm_config_kfree(pDM_Odm, hal->current_channel); /* 3. set Bandwidth register */ if (hal->bSetChnlBW) { /* get primary channel index */ u8 pri_ch_idx = get_pri_ch_id(adapter); /* 3.1 set MAC register */ mac_switch_bandwidth(adapter, pri_ch_idx); /* 3.2 set BB/RF registet */ ret = config_phydm_switch_bandwidth_8821c(pDM_Odm, pri_ch_idx, hal->current_channel_bw); hal->bSetChnlBW = _FALSE; if (!ret) { RTW_INFO("%s: config_phydm_switch_bandwidth_8821c fail\n", __FUNCTION__); rtw_warn_on(1); return; } } /* TX Power Setting */ /* odm_clear_txpowertracking_state(pDM_Odm); */ rtw_hal_set_tx_power_level(adapter, hal->current_channel); /* IQK */ if ((hal->bNeedIQK == _TRUE) || (adapter->registrypriv.mp_mode == 1)) { #ifdef CONFIG_IQK_MONITOR u32 iqk_start_time = rtw_get_current_time(); #endif phy_iq_calibrate_8821c(pDM_Odm, _FALSE); #ifdef CONFIG_IQK_MONITOR RTW_INFO(ADPT_FMT" switch CH(%d) DO IQK : %d ms\n", ADPT_ARG(adapter), hal->current_channel, rtw_get_passing_time_ms(iqk_start_time)); #endif hal->bNeedIQK = _FALSE; } } /* * Description: * Store channel setting to hal date * Parameters: * bSwitchChannel swith channel or not * bSetBandWidth set band or not * ChannelNum center channel * ChnlWidth bandwidth * ChnlOffsetOf40MHz channel offset for 40MHz Bandwidth * ChnlOffsetOf80MHz channel offset for 80MHz Bandwidth * CenterFrequencyIndex1 center channel index */ void rtl8821c_handle_sw_chnl_and_set_bw( PADAPTER Adapter, u8 bSwitchChannel, u8 bSetBandWidth, u8 ChannelNum, CHANNEL_WIDTH ChnlWidth, u8 ChnlOffsetOf40MHz, u8 ChnlOffsetOf80MHz, u8 CenterFrequencyIndex1) { PHAL_DATA_TYPE hal = GET_HAL_DATA(Adapter); u8 tmpChannel = hal->current_channel; CHANNEL_WIDTH tmpBW = hal->current_channel_bw; u8 tmpnCur40MhzPrimeSC = hal->nCur40MhzPrimeSC; u8 tmpnCur80MhzPrimeSC = hal->nCur80MhzPrimeSC; u8 tmpCenterFrequencyIndex1 = hal->CurrentCenterFrequencyIndex1; struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; /* check swchnl or setbw */ if (!bSwitchChannel && !bSetBandWidth) { RTW_INFO("%s: not switch channel and not set bandwidth\n", __FUNCTION__); return; } /* skip switch channel operation for current channel & ChannelNum(will be switch) are the same */ if (bSwitchChannel) { if (hal->current_channel != ChannelNum) { if (HAL_IsLegalChannel(Adapter, ChannelNum)) hal->bSwChnl = _TRUE; else return; } } /* check set BandWidth */ if (bSetBandWidth) { /* initial channel bw setting */ if (hal->bChnlBWInitialized == _FALSE) { hal->bChnlBWInitialized = _TRUE; hal->bSetChnlBW = _TRUE; } else if ((hal->current_channel_bw != ChnlWidth) || /* check whether need set band or not */ (hal->nCur40MhzPrimeSC != ChnlOffsetOf40MHz) || (hal->nCur80MhzPrimeSC != ChnlOffsetOf80MHz) || (hal->CurrentCenterFrequencyIndex1 != CenterFrequencyIndex1)) hal->bSetChnlBW = _TRUE; } /* return if not need set bandwidth nor channel after check*/ if (!hal->bSetChnlBW && !hal->bSwChnl && hal->bNeedIQK != _TRUE) return; /* set channel number to hal data */ if (hal->bSwChnl) { hal->current_channel = ChannelNum; hal->CurrentCenterFrequencyIndex1 = ChannelNum; } /* set bandwidth info to hal data */ if (hal->bSetChnlBW) { hal->current_channel_bw = ChnlWidth; hal->nCur40MhzPrimeSC = ChnlOffsetOf40MHz; hal->nCur80MhzPrimeSC = ChnlOffsetOf80MHz; hal->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1; } /* switch channel & bandwidth */ if (!RTW_CANNOT_RUN(Adapter)) rtl8821c_switch_chnl_and_set_bw(Adapter); else { if (hal->bSwChnl) { hal->current_channel = tmpChannel; hal->CurrentCenterFrequencyIndex1 = tmpChannel; } if (hal->bSetChnlBW) { hal->current_channel_bw = tmpBW; hal->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC; hal->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC; hal->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1; } } } /* * Description: * Change channel, bandwidth & offset * Parameters: * center_ch center channel * bw bandwidth * offset40 channel offset for 40MHz Bandwidth * offset80 channel offset for 80MHz Bandwidth */ void rtl8821c_set_channel_bw(PADAPTER adapter, u8 center_ch, CHANNEL_WIDTH bw, u8 offset40, u8 offset80) { rtl8821c_handle_sw_chnl_and_set_bw(adapter, _TRUE, _TRUE, center_ch, bw, offset40, offset80, center_ch); } void rtl8821c_notch_filter_switch(PADAPTER adapter, bool enable) { if (enable) RTW_INFO("%s: Enable notch filter\n", __FUNCTION__); else RTW_INFO("%s: Disable notch filter\n", __FUNCTION__); } #ifdef CONFIG_MP_INCLUDED /* * Description: * Config RF path * * Parameters: * adapter pointer of struct _ADAPTER */ void rtl8821c_mp_config_rfpath(PADAPTER adapter) { PHAL_DATA_TYPE hal; PMPT_CONTEXT mpt; ANTENNA_PATH anttx, antrx; enum odm_rf_path_e rxant; hal = GET_HAL_DATA(adapter); mpt = &adapter->mppriv.mpt_ctx; anttx = hal->antenna_tx_path; antrx = hal->AntennaRxPath; RTW_INFO("+Config RF Path, tx=0x%x rx=0x%x\n", anttx, antrx); #if 0 /* phydm not ready */ switch (anttx) { case ANTENNA_A: mpt->mpt_rf_path = ODM_RF_A; break; case ANTENNA_B: mpt->mpt_rf_path = ODM_RF_B; break; case ANTENNA_AB: default: mpt->mpt_rf_path = ODM_RF_A | ODM_RF_B; break; } switch (antrx) { case ANTENNA_A: rxant = ODM_RF_A; break; case ANTENNA_B: rxant = ODM_RF_B; break; case ANTENNA_AB: default: rxant = ODM_RF_A | ODM_RF_B; break; } config_phydm_trx_mode_8821c(GET_PDM_ODM(adapter), mpt->mpt_rf_path, rxant, FALSE); #endif RTW_INFO("-Config RF Path Finish\n"); } #endif /* CONFIG_MP_INCLUDED */