rtw_efuse.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. *
  19. ******************************************************************************/
  20. #define _RTW_EFUSE_C_
  21. #include <drv_types.h>
  22. #include <hal_data.h>
  23. #include "../hal/efuse/efuse_mask.h"
  24. /*------------------------Define local variable------------------------------*/
  25. u8 fakeEfuseBank = {0};
  26. u32 fakeEfuseUsedBytes = {0};
  27. u8 fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0};
  28. u8 fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0};
  29. u8 fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0};
  30. u32 BTEfuseUsedBytes = {0};
  31. u8 BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
  32. u8 BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  33. u8 BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  34. u32 fakeBTEfuseUsedBytes = {0};
  35. u8 fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
  36. u8 fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  37. u8 fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  38. u8 maskfileBuffer[64];
  39. /*------------------------Define local variable------------------------------*/
  40. BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
  41. {
  42. int r = Offset / 16;
  43. int c = (Offset % 16) / 2;
  44. int result = 0;
  45. if (pAdapter->registrypriv.boffefusemask)
  46. return FALSE;
  47. if (c < 4) /* Upper double word */
  48. result = (maskfileBuffer[r] & (0x10 << c));
  49. else
  50. result = (maskfileBuffer[r] & (0x01 << (c - 4)));
  51. return (result > 0) ? 0 : 1;
  52. }
  53. BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
  54. {
  55. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  56. if (pAdapter->registrypriv.boffefusemask)
  57. return FALSE;
  58. #if DEV_BUS_TYPE == RT_USB_INTERFACE
  59. #if defined(CONFIG_RTL8188E)
  60. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  61. return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE;
  62. #endif
  63. #if defined(CONFIG_RTL8812A)
  64. if (IS_HARDWARE_TYPE_8812(pAdapter))
  65. return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE;
  66. #endif
  67. #if defined(CONFIG_RTL8821A)
  68. #if 0
  69. if (IS_HARDWARE_TYPE_8811AU(pAdapter))
  70. return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE;
  71. #endif
  72. if (IS_HARDWARE_TYPE_8821(pAdapter))
  73. return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE;
  74. #endif
  75. #if defined(CONFIG_RTL8192E)
  76. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  77. return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE;
  78. #endif
  79. #if defined(CONFIG_RTL8723B)
  80. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  81. return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE;
  82. #endif
  83. #if defined(CONFIG_RTL8703B)
  84. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  85. return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE;
  86. #endif
  87. #if defined(CONFIG_RTL8814A)
  88. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  89. return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE;
  90. #endif
  91. #if defined(CONFIG_RTL8188F)
  92. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  93. return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE;
  94. #endif
  95. #if defined(CONFIG_RTL8822B)
  96. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  97. return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE;
  98. #endif
  99. #if defined(CONFIG_RTL8723D)
  100. if (IS_HARDWARE_TYPE_8723D(pAdapter))
  101. return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE;
  102. #endif
  103. #if defined(CONFIG_RTL8821C)
  104. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  105. return (IS_MASKED(8821C, _MUSB, Offset)) ? TRUE : FALSE;
  106. #endif
  107. #elif DEV_BUS_TYPE == RT_PCI_INTERFACE
  108. #if defined(CONFIG_RTL8188E)
  109. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  110. return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE;
  111. #endif
  112. #if defined(CONFIG_RTL8192E)
  113. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  114. return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE;
  115. #endif
  116. #if defined(CONFIG_RTL8812A)
  117. if (IS_HARDWARE_TYPE_8812(pAdapter))
  118. return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE;
  119. #endif
  120. #if defined(CONFIG_RTL8821A)
  121. if (IS_HARDWARE_TYPE_8821(pAdapter))
  122. return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE;
  123. #endif
  124. #if defined(CONFIG_RTL8723B)
  125. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  126. return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE;
  127. #endif
  128. #if defined(CONFIG_RTL8814A)
  129. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  130. return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE;
  131. #endif
  132. #if defined(CONFIG_RTL8822B)
  133. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  134. return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE;
  135. #endif
  136. #if defined(CONFIG_RTL8821C)
  137. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  138. return (IS_MASKED(8821C, _MPCIE, Offset)) ? TRUE : FALSE;
  139. #endif
  140. #elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
  141. #ifdef CONFIG_RTL8188E_SDIO
  142. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  143. return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE;
  144. #endif
  145. #ifdef CONFIG_RTL8723B
  146. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  147. return (IS_MASKED(8723B, _MSDIO, Offset)) ? TRUE : FALSE;
  148. #endif
  149. #ifdef CONFIG_RTL8188F_SDIO
  150. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  151. return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE;
  152. #endif
  153. #ifdef CONFIG_RTL8192E
  154. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  155. return (IS_MASKED(8192E, _MSDIO, Offset)) ? TRUE : FALSE;
  156. #endif
  157. #if defined(CONFIG_RTL8821A)
  158. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  159. return (IS_MASKED(8821A, _MSDIO, Offset)) ? TRUE : FALSE;
  160. #endif
  161. #if defined(CONFIG_RTL8821C)
  162. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  163. return (IS_MASKED(8821C, _MSDIO, Offset)) ? TRUE : FALSE;
  164. #endif
  165. #if defined(CONFIG_RTL8822B)
  166. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  167. return (IS_MASKED(8822B, _MSDIO, Offset)) ? TRUE : FALSE;
  168. #endif
  169. #endif
  170. return FALSE;
  171. }
  172. void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
  173. {
  174. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  175. #if DEV_BUS_TYPE == RT_USB_INTERFACE
  176. #if defined(CONFIG_RTL8188E)
  177. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  178. GET_MASK_ARRAY(8188E, _MUSB, pArray);
  179. #endif
  180. #if defined(CONFIG_RTL8812A)
  181. if (IS_HARDWARE_TYPE_8812(pAdapter))
  182. GET_MASK_ARRAY(8812A, _MUSB, pArray);
  183. #endif
  184. #if defined(CONFIG_RTL8821A)
  185. if (IS_HARDWARE_TYPE_8821(pAdapter))
  186. GET_MASK_ARRAY(8821A, _MUSB, pArray);
  187. #endif
  188. #if defined(CONFIG_RTL8192E)
  189. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  190. GET_MASK_ARRAY(8192E, _MUSB, pArray);
  191. #endif
  192. #if defined(CONFIG_RTL8723B)
  193. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  194. GET_MASK_ARRAY(8723B, _MUSB, pArray);
  195. #endif
  196. #if defined(CONFIG_RTL8703B)
  197. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  198. GET_MASK_ARRAY(8703B, _MUSB, pArray);
  199. #endif
  200. #if defined(CONFIG_RTL8188F)
  201. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  202. GET_MASK_ARRAY(8188F, _MUSB, pArray);
  203. #endif
  204. #if defined(CONFIG_RTL8814A)
  205. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  206. GET_MASK_ARRAY(8814A, _MUSB, pArray);
  207. #endif
  208. #if defined(CONFIG_RTL8822B)
  209. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  210. GET_MASK_ARRAY(8822B, _MUSB, pArray);
  211. #endif
  212. #if defined(CONFIG_RTL8821C)
  213. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  214. GET_MASK_ARRAY(8821C, _MUSB, pArray);
  215. #endif
  216. #elif DEV_BUS_TYPE == RT_PCI_INTERFACE
  217. #if defined(CONFIG_RTL8188E)
  218. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  219. GET_MASK_ARRAY(8188E, _MPCIE, pArray);
  220. #endif
  221. #if defined(CONFIG_RTL8192E)
  222. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  223. GET_MASK_ARRAY(8192E, _MPCIE, pArray);
  224. #endif
  225. #if defined(CONFIG_RTL8812A)
  226. if (IS_HARDWARE_TYPE_8812(pAdapter))
  227. GET_MASK_ARRAY(8812A, _MPCIE, pArray);
  228. #endif
  229. #if defined(CONFIG_RTL8821A)
  230. if (IS_HARDWARE_TYPE_8821(pAdapter))
  231. GET_MASK_ARRAY(8821A, _MPCIE, pArray);
  232. #endif
  233. #if defined(CONFIG_RTL8723B)
  234. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  235. GET_MASK_ARRAY(8723B, _MPCIE, pArray);
  236. #endif
  237. #if defined(CONFIG_RTL8814A)
  238. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  239. GET_MASK_ARRAY(8814A, _MPCIE, pArray);
  240. #endif
  241. #if defined(CONFIG_RTL8822B)
  242. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  243. GET_MASK_ARRAY(8822B, _MPCIE, pArray);
  244. #endif
  245. #if defined(CONFIG_RTL8821C)
  246. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  247. GET_MASK_ARRAY(8821C, _MPCIE, pArray);
  248. #endif
  249. #elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
  250. #if defined(CONFIG_RTL8188E)
  251. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  252. GET_MASK_ARRAY(8188E, _MSDIO, pArray);
  253. #endif
  254. #if defined(CONFIG_RTL8723B)
  255. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  256. GET_MASK_ARRAY(8723B, _MSDIO, pArray);
  257. #endif
  258. #if defined(CONFIG_RTL8188F)
  259. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  260. GET_MASK_ARRAY(8188F, _MSDIO, pArray);
  261. #endif
  262. #if defined(CONFIG_RTL8192E)
  263. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  264. GET_MASK_ARRAY(8192E, _MSDIO, pArray);
  265. #endif
  266. #if defined(CONFIG_RTL8821A)
  267. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  268. GET_MASK_ARRAY(8821A, _MSDIO, pArray);
  269. #endif
  270. #if defined(CONFIG_RTL8821C)
  271. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  272. GET_MASK_ARRAY(8821C , _MSDIO, pArray);
  273. #endif
  274. #if defined(CONFIG_RTL8822B)
  275. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  276. GET_MASK_ARRAY(8822B , _MSDIO, pArray);
  277. #endif
  278. #endif /*#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE*/
  279. }
  280. u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)
  281. {
  282. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  283. #if DEV_BUS_TYPE == RT_USB_INTERFACE
  284. #if defined(CONFIG_RTL8188E)
  285. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  286. return GET_MASK_ARRAY_LEN(8188E, _MUSB);
  287. #endif
  288. #if defined(CONFIG_RTL8812A)
  289. if (IS_HARDWARE_TYPE_8812(pAdapter))
  290. return GET_MASK_ARRAY_LEN(8812A, _MUSB);
  291. #endif
  292. #if defined(CONFIG_RTL8821A)
  293. if (IS_HARDWARE_TYPE_8821(pAdapter))
  294. return GET_MASK_ARRAY_LEN(8821A, _MUSB);
  295. #endif
  296. #if defined(CONFIG_RTL8192E)
  297. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  298. return GET_MASK_ARRAY_LEN(8192E, _MUSB);
  299. #endif
  300. #if defined(CONFIG_RTL8723B)
  301. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  302. return GET_MASK_ARRAY_LEN(8723B, _MUSB);
  303. #endif
  304. #if defined(CONFIG_RTL8703B)
  305. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  306. return GET_MASK_ARRAY_LEN(8703B, _MUSB);
  307. #endif
  308. #if defined(CONFIG_RTL8188F)
  309. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  310. return GET_MASK_ARRAY_LEN(8188F, _MUSB);
  311. #endif
  312. #if defined(CONFIG_RTL8814A)
  313. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  314. return GET_MASK_ARRAY_LEN(8814A, _MUSB);
  315. #endif
  316. #if defined(CONFIG_RTL8822B)
  317. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  318. return GET_MASK_ARRAY_LEN(8822B, _MUSB);
  319. #endif
  320. #if defined(CONFIG_RTL8821C)
  321. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  322. return GET_MASK_ARRAY_LEN(8821C, _MUSB);
  323. #endif
  324. #elif DEV_BUS_TYPE == RT_PCI_INTERFACE
  325. #if defined(CONFIG_RTL8188E)
  326. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  327. return GET_MASK_ARRAY_LEN(8188E, _MPCIE);
  328. #endif
  329. #if defined(CONFIG_RTL8192E)
  330. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  331. return GET_MASK_ARRAY_LEN(8192E, _MPCIE);
  332. #endif
  333. #if defined(CONFIG_RTL8812A)
  334. if (IS_HARDWARE_TYPE_8812(pAdapter))
  335. return GET_MASK_ARRAY_LEN(8812A, _MPCIE);
  336. #endif
  337. #if defined(CONFIG_RTL8821A)
  338. if (IS_HARDWARE_TYPE_8821(pAdapter))
  339. return GET_MASK_ARRAY_LEN(8821A, _MPCIE);
  340. #endif
  341. #if defined(CONFIG_RTL8723B)
  342. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  343. return GET_MASK_ARRAY_LEN(8723B, _MPCIE);
  344. #endif
  345. #if defined(CONFIG_RTL8814A)
  346. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  347. return GET_MASK_ARRAY_LEN(8814A, _MPCIE);
  348. #endif
  349. #if defined(CONFIG_RTL8822B)
  350. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  351. return GET_MASK_ARRAY_LEN(8822B, _MPCIE);
  352. #endif
  353. #if defined(CONFIG_RTL8821C)
  354. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  355. return GET_MASK_ARRAY_LEN(8821C, _MPCIE);
  356. #endif
  357. #elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
  358. #if defined(CONFIG_RTL8188E)
  359. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  360. return GET_MASK_ARRAY_LEN(8188E, _MSDIO);
  361. #endif
  362. #if defined(CONFIG_RTL8723B)
  363. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  364. return GET_MASK_ARRAY_LEN(8723B, _MSDIO);
  365. #endif
  366. #if defined(CONFIG_RTL8188F)
  367. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  368. return GET_MASK_ARRAY_LEN(8188F, _MSDIO);
  369. #endif
  370. #if defined(CONFIG_RTL8192E)
  371. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  372. return GET_MASK_ARRAY_LEN(8192E, _MSDIO);
  373. #endif
  374. #if defined(CONFIG_RTL8821A)
  375. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  376. return GET_MASK_ARRAY_LEN(8821A, _MSDIO);
  377. #endif
  378. #if defined(CONFIG_RTL8821C)
  379. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  380. return GET_MASK_ARRAY_LEN(8821C, _MSDIO);
  381. #endif
  382. #if defined(CONFIG_RTL8822B)
  383. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  384. return GET_MASK_ARRAY_LEN(8822B, _MSDIO);
  385. #endif
  386. #endif
  387. return 0;
  388. }
  389. u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  390. {
  391. u8 ret = _SUCCESS;
  392. u16 mapLen = 0, i = 0;
  393. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  394. ret = rtw_efuse_map_read(padapter, addr, cnts , data);
  395. if (padapter->registrypriv.boffefusemask == 0) {
  396. for (i = 0; i < cnts; i++) {
  397. if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
  398. if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask.*/
  399. data[i] = 0xff;
  400. } else {
  401. /*RTW_INFO(" %s , data[%d] = %x\n", __func__, i, data[i]);*/
  402. if (efuse_IsMasked(padapter, addr + i)) {
  403. data[i] = 0xff;
  404. /*RTW_INFO(" %s ,mask data[%d] = %x\n", __func__, i, data[i]);*/
  405. }
  406. }
  407. }
  408. }
  409. return ret;
  410. }
  411. #ifdef RTW_HALMAC
  412. #include "../../hal/hal_halmac.h"
  413. void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
  414. {
  415. }
  416. void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
  417. {
  418. }
  419. u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size)
  420. {
  421. *size = 0;
  422. return _FAIL;
  423. }
  424. u16 efuse_GetMaxSize(PADAPTER adapter)
  425. {
  426. struct dvobj_priv *d;
  427. u32 size = 0;
  428. int err;
  429. d = adapter_to_dvobj(adapter);
  430. err = rtw_halmac_get_physical_efuse_size(d, &size);
  431. if (err)
  432. return 0;
  433. return size;
  434. }
  435. u16 efuse_GetavailableSize(PADAPTER adapter)
  436. {
  437. struct dvobj_priv *d;
  438. u32 size = 0;
  439. int err;
  440. d = adapter_to_dvobj(adapter);
  441. err = rtw_halmac_get_available_efuse_size(d, &size);
  442. if (err)
  443. return 0;
  444. return size;
  445. }
  446. u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *usesize)
  447. {
  448. u8 *efuse_map;
  449. *usesize = 0;
  450. efuse_map = rtw_malloc(EFUSE_BT_MAP_LEN);
  451. if (efuse_map == NULL) {
  452. RTW_DBG("%s: malloc FAIL\n", __FUNCTION__);
  453. return _FAIL;
  454. }
  455. /* for get bt phy efuse last use byte */
  456. hal_ReadEFuse_BT_logic_map(adapter, 0x00, EFUSE_BT_MAP_LEN, efuse_map);
  457. *usesize = fakeBTEfuseUsedBytes;
  458. if (efuse_map)
  459. rtw_mfree(efuse_map, EFUSE_BT_MAP_LEN);
  460. return _SUCCESS;
  461. }
  462. u16 efuse_bt_GetMaxSize(PADAPTER adapter)
  463. {
  464. return EFUSE_BT_REAL_CONTENT_LEN;
  465. }
  466. void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test)
  467. {
  468. struct dvobj_priv *d;
  469. u32 v32 = 0;
  470. d = adapter_to_dvobj(adapter);
  471. if (adapter->hal_func.EFUSEGetEfuseDefinition) {
  472. adapter->hal_func.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test);
  473. return;
  474. }
  475. if (EFUSE_WIFI == efusetype) {
  476. switch (type) {
  477. case TYPE_EFUSE_MAP_LEN:
  478. rtw_halmac_get_logical_efuse_size(d, &v32);
  479. *(u16 *)out = (u16)v32;
  480. return;
  481. case TYPE_EFUSE_REAL_CONTENT_LEN:
  482. rtw_halmac_get_physical_efuse_size(d, &v32);
  483. *(u16 *)out = (u16)v32;
  484. return;
  485. }
  486. } else if (EFUSE_BT == efusetype) {
  487. switch (type) {
  488. case TYPE_EFUSE_MAP_LEN:
  489. *(u16 *)out = EFUSE_BT_MAP_LEN;
  490. return;
  491. case TYPE_EFUSE_REAL_CONTENT_LEN:
  492. *(u16 *)out = EFUSE_BT_REAL_CONTENT_LEN;
  493. return;
  494. }
  495. }
  496. }
  497. /*
  498. * read/write raw efuse data
  499. */
  500. u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
  501. {
  502. struct dvobj_priv *d;
  503. u8 *efuse = NULL;
  504. u32 size, i;
  505. int err;
  506. d = adapter_to_dvobj(adapter);
  507. err = rtw_halmac_get_physical_efuse_size(d, &size);
  508. if (err)
  509. size = EFUSE_MAX_SIZE;
  510. if ((addr + cnts) > size)
  511. return _FAIL;
  512. if (_TRUE == write) {
  513. err = rtw_halmac_write_physical_efuse(d, addr, cnts, data);
  514. if (err)
  515. return _FAIL;
  516. } else {
  517. if (cnts > 16)
  518. efuse = rtw_zmalloc(size);
  519. if (efuse) {
  520. err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
  521. if (err) {
  522. rtw_mfree(efuse, size);
  523. return _FAIL;
  524. }
  525. _rtw_memcpy(data, efuse + addr, cnts);
  526. rtw_mfree(efuse, size);
  527. } else {
  528. err = rtw_halmac_read_physical_efuse(d, addr, cnts, data);
  529. if (err)
  530. return _FAIL;
  531. }
  532. }
  533. return _SUCCESS;
  534. }
  535. static inline void dump_buf(u8 *buf, u32 len)
  536. {
  537. u32 i;
  538. RTW_INFO("-----------------Len %d----------------\n", len);
  539. for (i = 0; i < len; i++)
  540. printk("%2.2x-", *(buf + i));
  541. printk("\n");
  542. }
  543. /*
  544. * read/write raw efuse data
  545. */
  546. u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
  547. {
  548. struct dvobj_priv *d;
  549. u8 *efuse = NULL;
  550. u32 size, i;
  551. int err = _FAIL;
  552. d = adapter_to_dvobj(adapter);
  553. size = EFUSE_BT_REAL_CONTENT_LEN;
  554. if ((addr + cnts) > size)
  555. return _FAIL;
  556. if (_TRUE == write) {
  557. err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data);
  558. if (err == -1) {
  559. RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__);
  560. return _FAIL;
  561. }
  562. RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data);
  563. } else {
  564. efuse = rtw_zmalloc(size);
  565. if (efuse) {
  566. err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size);
  567. if (err == -1) {
  568. RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__);
  569. rtw_mfree(efuse, size);
  570. return _FAIL;
  571. }
  572. dump_buf(efuse + addr, cnts);
  573. _rtw_memcpy(data, efuse + addr, cnts);
  574. RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok! data 0x%x\n", __FUNCTION__, *data);
  575. rtw_mfree(efuse, size);
  576. }
  577. }
  578. return _SUCCESS;
  579. }
  580. u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  581. {
  582. struct dvobj_priv *d;
  583. u8 *efuse = NULL;
  584. u32 size, i;
  585. int err;
  586. d = adapter_to_dvobj(adapter);
  587. err = rtw_halmac_get_logical_efuse_size(d, &size);
  588. if (err)
  589. return _FAIL;
  590. /* size error handle */
  591. if ((addr + cnts) > size) {
  592. if (addr < size)
  593. cnts = size - addr;
  594. else
  595. return _FAIL;
  596. }
  597. if (cnts > 16)
  598. efuse = rtw_zmalloc(size);
  599. if (efuse) {
  600. err = rtw_halmac_read_logical_efuse_map(d, efuse, size);
  601. if (err) {
  602. rtw_mfree(efuse, size);
  603. return _FAIL;
  604. }
  605. _rtw_memcpy(data, efuse + addr, cnts);
  606. rtw_mfree(efuse, size);
  607. } else {
  608. err = rtw_halmac_read_logical_efuse(d, addr, cnts, data);
  609. if (err)
  610. return _FAIL;
  611. }
  612. return _SUCCESS;
  613. }
  614. u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  615. {
  616. struct dvobj_priv *d;
  617. u8 *efuse = NULL;
  618. u32 size, i;
  619. int err;
  620. u8 mask_buf[64] = "";
  621. u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter);
  622. d = adapter_to_dvobj(adapter);
  623. err = rtw_halmac_get_logical_efuse_size(d, &size);
  624. if (err)
  625. return _FAIL;
  626. if ((addr + cnts) > size)
  627. return _FAIL;
  628. efuse = rtw_zmalloc(size);
  629. if (!efuse)
  630. return _FAIL;
  631. err = rtw_halmac_read_logical_efuse_map(d, efuse, size);
  632. if (err) {
  633. rtw_mfree(efuse, size);
  634. return _FAIL;
  635. }
  636. _rtw_memcpy(efuse + addr, data, cnts);
  637. if (adapter->registrypriv.boffefusemask == 0) {
  638. RTW_INFO("Use mask Array Len: %d\n", mask_len);
  639. if (mask_len != 0) {
  640. if (adapter->registrypriv.bFileMaskEfuse == _TRUE)
  641. _rtw_memcpy(mask_buf, maskfileBuffer, mask_len);
  642. else
  643. rtw_efuse_mask_array(adapter, mask_buf);
  644. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len);
  645. } else
  646. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0);
  647. } else {
  648. _rtw_memset(mask_buf, 0xFF, sizeof(mask_buf));
  649. RTW_INFO("Efuse mask off\n");
  650. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16);
  651. }
  652. if (err) {
  653. rtw_mfree(efuse, size);
  654. return _FAIL;
  655. }
  656. rtw_mfree(efuse, size);
  657. return _SUCCESS;
  658. }
  659. int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test)
  660. {
  661. return _FALSE;
  662. }
  663. int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test)
  664. {
  665. return _FALSE;
  666. }
  667. u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  668. {
  669. hal_ReadEFuse_BT_logic_map(adapter,addr, cnts, data);
  670. return _SUCCESS;
  671. }
  672. u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  673. {
  674. #define RT_ASSERT_RET(expr) \
  675. if (!(expr)) { \
  676. printk("Assertion failed! %s at ......\n", #expr); \
  677. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  678. return _FAIL; \
  679. }
  680. u8 offset, word_en;
  681. u8 *map;
  682. u8 newdata[PGPKT_DATA_SIZE];
  683. s32 i = 0, j = 0, idx;
  684. u8 ret = _SUCCESS;
  685. u16 mapLen = 1024;
  686. if ((addr + cnts) > mapLen)
  687. return _FAIL;
  688. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  689. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  690. map = rtw_zmalloc(mapLen);
  691. if (map == NULL)
  692. return _FAIL;
  693. ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map);
  694. if (ret == _FAIL)
  695. goto exit;
  696. RTW_INFO("OFFSET\tVALUE(hex)\n");
  697. for (i = 0; i < mapLen; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
  698. RTW_INFO("0x%03x\t", i);
  699. for (j = 0; j < 8; j++)
  700. RTW_INFO("%02X ", map[i + j]);
  701. RTW_INFO("\t");
  702. for (; j < 16; j++)
  703. RTW_INFO("%02X ", map[i + j]);
  704. RTW_INFO("\n");
  705. }
  706. RTW_INFO("\n");
  707. idx = 0;
  708. offset = (addr >> 3);
  709. while (idx < cnts) {
  710. word_en = 0xF;
  711. j = (addr + idx) & 0x7;
  712. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  713. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  714. if (data[idx] != map[addr + idx]) {
  715. word_en &= ~BIT(i >> 1);
  716. newdata[i] = data[idx];
  717. }
  718. }
  719. if (word_en != 0xF) {
  720. ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE);
  721. RTW_INFO("offset=%x\n", offset);
  722. RTW_INFO("word_en=%x\n", word_en);
  723. RTW_INFO("%s: data=", __FUNCTION__);
  724. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  725. RTW_INFO("0x%02X ", newdata[i]);
  726. RTW_INFO("\n");
  727. if (ret == _FAIL)
  728. break;
  729. }
  730. offset++;
  731. }
  732. exit:
  733. rtw_mfree(map, mapLen);
  734. return _SUCCESS;
  735. }
  736. VOID hal_ReadEFuse_BT_logic_map(
  737. PADAPTER padapter,
  738. u16 _offset,
  739. u16 _size_byte,
  740. u8 *pbuf
  741. )
  742. {
  743. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  744. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  745. u8 *efuseTbl, *phyefuse;
  746. u8 bank;
  747. u16 eFuse_Addr = 0;
  748. u8 efuseHeader, efuseExtHdr, efuseData;
  749. u8 offset, wden;
  750. u16 i, total, used;
  751. u8 efuse_usage;
  752. /* */
  753. /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
  754. /* */
  755. if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
  756. RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
  757. return;
  758. }
  759. efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
  760. phyefuse = rtw_malloc(EFUSE_BT_REAL_CONTENT_LEN);
  761. if (efuseTbl == NULL || phyefuse == NULL) {
  762. RTW_INFO("%s: efuseTbl or phyefuse malloc fail!\n", __FUNCTION__);
  763. goto exit;
  764. }
  765. /* 0xff will be efuse default value instead of 0x00. */
  766. _rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
  767. _rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_CONTENT_LEN);
  768. if (rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_CONTENT_LEN, phyefuse))
  769. dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
  770. total = BANK_NUM;
  771. for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */
  772. eFuse_Addr = 0;
  773. while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
  774. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
  775. efuseHeader = phyefuse[eFuse_Addr++];
  776. if (efuseHeader == 0xFF)
  777. break;
  778. RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
  779. /* Check PG header for section num. */
  780. if (EXT_HEADER(efuseHeader)) { /* extended header */
  781. offset = GET_HDR_OFFSET_2_0(efuseHeader);
  782. RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
  783. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
  784. efuseExtHdr = phyefuse[eFuse_Addr++];
  785. RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
  786. if (ALL_WORDS_DISABLED(efuseExtHdr))
  787. continue;
  788. offset |= ((efuseExtHdr & 0xF0) >> 1);
  789. wden = (efuseExtHdr & 0x0F);
  790. } else {
  791. offset = ((efuseHeader >> 4) & 0x0f);
  792. wden = (efuseHeader & 0x0f);
  793. }
  794. if (offset < EFUSE_BT_MAX_SECTION) {
  795. u16 addr;
  796. /* Get word enable value from PG header */
  797. RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
  798. addr = offset * PGPKT_DATA_SIZE;
  799. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  800. /* Check word enable condition in the section */
  801. if (!(wden & (0x01 << i))) {
  802. efuseData = 0;
  803. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
  804. efuseData = phyefuse[eFuse_Addr++];
  805. RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
  806. efuseTbl[addr] = efuseData;
  807. efuseData = 0;
  808. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
  809. efuseData = phyefuse[eFuse_Addr++];
  810. RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
  811. efuseTbl[addr + 1] = efuseData;
  812. }
  813. addr += 2;
  814. }
  815. } else {
  816. RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
  817. eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
  818. }
  819. }
  820. if ((eFuse_Addr - 1) < total) {
  821. RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
  822. break;
  823. }
  824. }
  825. /* switch bank back to bank 0 for later BT and wifi use. */
  826. //hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
  827. /* Copy from Efuse map to output pointer memory!!! */
  828. for (i = 0; i < _size_byte; i++)
  829. pbuf[i] = efuseTbl[_offset + i];
  830. /* Calculate Efuse utilization */
  831. total = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  832. used = eFuse_Addr - 1;
  833. if (total)
  834. efuse_usage = (u8)((used * 100) / total);
  835. else
  836. efuse_usage = 100;
  837. fakeBTEfuseUsedBytes = used;
  838. RTW_INFO("%s: BTEfuseUsed last Bytes = %#x\n", __FUNCTION__, fakeBTEfuseUsedBytes);
  839. exit:
  840. if (efuseTbl)
  841. rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
  842. if (phyefuse)
  843. rtw_mfree(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
  844. }
  845. static u8 hal_EfusePartialWriteCheck(
  846. PADAPTER padapter,
  847. u8 efuseType,
  848. u16 *pAddr,
  849. PPGPKT_STRUCT pTargetPkt,
  850. u8 bPseudoTest)
  851. {
  852. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  853. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  854. u8 bRet = _FALSE;
  855. u16 startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  856. u8 efuse_data = 0;
  857. startAddr = (u16)fakeBTEfuseUsedBytes;
  858. startAddr %= efuse_max;
  859. RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
  860. while (1) {
  861. if (startAddr >= efuse_max_available_len) {
  862. bRet = _FALSE;
  863. RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
  864. __FUNCTION__, startAddr, efuse_max_available_len);
  865. break;
  866. }
  867. if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) {
  868. bRet = _FALSE;
  869. RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
  870. __FUNCTION__, startAddr, efuse_data);
  871. break;
  872. } else {
  873. /* not used header, 0xff */
  874. *pAddr = startAddr;
  875. /* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
  876. bRet = _TRUE;
  877. break;
  878. }
  879. }
  880. return bRet;
  881. }
  882. static u8 hal_EfusePgPacketWrite2ByteHeader(
  883. PADAPTER padapter,
  884. u8 efuseType,
  885. u16 *pAddr,
  886. PPGPKT_STRUCT pTargetPkt,
  887. u8 bPseudoTest)
  888. {
  889. u16 efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  890. u8 pg_header = 0, tmp_header = 0;
  891. u8 repeatcnt = 0;
  892. /* RTW_INFO("%s\n", __FUNCTION__); */
  893. efuse_addr = *pAddr;
  894. if (efuse_addr >= efuse_max_available_len) {
  895. RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
  896. return _FALSE;
  897. }
  898. pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
  899. /* RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */
  900. do {
  901. rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
  902. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
  903. if (tmp_header != 0xFF)
  904. break;
  905. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  906. RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
  907. return _FALSE;
  908. }
  909. } while (1);
  910. if (tmp_header != pg_header) {
  911. RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  912. return _FALSE;
  913. }
  914. /* to write ext_header */
  915. efuse_addr++;
  916. pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
  917. do {
  918. rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
  919. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
  920. if (tmp_header != 0xFF)
  921. break;
  922. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  923. RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
  924. return _FALSE;
  925. }
  926. } while (1);
  927. if (tmp_header != pg_header) { /* offset PG fail */
  928. RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  929. return _FALSE;
  930. }
  931. *pAddr = efuse_addr;
  932. return _TRUE;
  933. }
  934. static u8 hal_EfusePgPacketWrite1ByteHeader(
  935. PADAPTER pAdapter,
  936. u8 efuseType,
  937. u16 *pAddr,
  938. PPGPKT_STRUCT pTargetPkt,
  939. u8 bPseudoTest)
  940. {
  941. u8 bRet = _FALSE;
  942. u8 pg_header = 0, tmp_header = 0;
  943. u16 efuse_addr = *pAddr;
  944. u8 repeatcnt = 0;
  945. /* RTW_INFO("%s\n", __FUNCTION__); */
  946. pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
  947. do {
  948. rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header);
  949. rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header);
  950. if (tmp_header != 0xFF)
  951. break;
  952. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  953. RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
  954. return _FALSE;
  955. }
  956. } while (1);
  957. if (tmp_header != pg_header) {
  958. RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  959. return _FALSE;
  960. }
  961. *pAddr = efuse_addr;
  962. return _TRUE;
  963. }
  964. static u8 hal_EfusePgPacketWriteHeader(
  965. PADAPTER padapter,
  966. u8 efuseType,
  967. u16 *pAddr,
  968. PPGPKT_STRUCT pTargetPkt,
  969. u8 bPseudoTest)
  970. {
  971. u8 bRet = _FALSE;
  972. if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
  973. bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
  974. else
  975. bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
  976. return bRet;
  977. }
  978. static u8
  979. Hal_EfuseWordEnableDataWrite(
  980. PADAPTER padapter,
  981. u16 efuse_addr,
  982. u8 word_en,
  983. u8 *data,
  984. u8 bPseudoTest)
  985. {
  986. u16 tmpaddr = 0;
  987. u16 start_addr = efuse_addr;
  988. u8 badworden = 0x0F;
  989. u8 tmpdata[PGPKT_DATA_SIZE];
  990. /* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */
  991. _rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
  992. if (!(word_en & BIT(0))) {
  993. tmpaddr = start_addr;
  994. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]);
  995. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]);
  996. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]);
  997. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]);
  998. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  999. badworden &= (~BIT(0));
  1000. }
  1001. if (!(word_en & BIT(1))) {
  1002. tmpaddr = start_addr;
  1003. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]);
  1004. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]);
  1005. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]);
  1006. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]);
  1007. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  1008. badworden &= (~BIT(1));
  1009. }
  1010. if (!(word_en & BIT(2))) {
  1011. tmpaddr = start_addr;
  1012. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]);
  1013. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]);
  1014. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]);
  1015. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]);
  1016. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  1017. badworden &= (~BIT(2));
  1018. }
  1019. if (!(word_en & BIT(3))) {
  1020. tmpaddr = start_addr;
  1021. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]);
  1022. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]);
  1023. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]);
  1024. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]);
  1025. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  1026. badworden &= (~BIT(3));
  1027. }
  1028. return badworden;
  1029. }
  1030. static void
  1031. hal_EfuseConstructPGPkt(
  1032. u8 offset,
  1033. u8 word_en,
  1034. u8 *pData,
  1035. PPGPKT_STRUCT pTargetPkt)
  1036. {
  1037. _rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
  1038. pTargetPkt->offset = offset;
  1039. pTargetPkt->word_en = word_en;
  1040. efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
  1041. pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
  1042. }
  1043. static u8
  1044. hal_EfusePgPacketWriteData(
  1045. PADAPTER pAdapter,
  1046. u8 efuseType,
  1047. u16 *pAddr,
  1048. PPGPKT_STRUCT pTargetPkt,
  1049. u8 bPseudoTest)
  1050. {
  1051. u16 efuse_addr;
  1052. u8 badworden;
  1053. efuse_addr = *pAddr;
  1054. badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
  1055. if (badworden != 0x0F) {
  1056. RTW_INFO("%s: Fail!!\n", __FUNCTION__);
  1057. return _FALSE;
  1058. } else
  1059. RTW_INFO("%s: OK!!\n", __FUNCTION__);
  1060. return _TRUE;
  1061. }
  1062. /* ***********************************************************
  1063. * Efuse related code
  1064. * *********************************************************** */
  1065. static u8
  1066. hal_EfuseSwitchToBank(
  1067. PADAPTER padapter,
  1068. u8 bank,
  1069. u8 bPseudoTest)
  1070. {
  1071. u8 bRet = _FALSE;
  1072. u32 value32 = 0;
  1073. #ifdef HAL_EFUSE_MEMORY
  1074. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  1075. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1076. #endif
  1077. RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
  1078. if (bPseudoTest) {
  1079. #ifdef HAL_EFUSE_MEMORY
  1080. pEfuseHal->fakeEfuseBank = bank;
  1081. #else
  1082. fakeEfuseBank = bank;
  1083. #endif
  1084. bRet = _TRUE;
  1085. } else {
  1086. value32 = rtw_read32(padapter, 0x34);
  1087. bRet = _TRUE;
  1088. switch (bank) {
  1089. case 0:
  1090. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
  1091. break;
  1092. case 1:
  1093. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
  1094. break;
  1095. case 2:
  1096. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
  1097. break;
  1098. case 3:
  1099. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
  1100. break;
  1101. default:
  1102. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
  1103. bRet = _FALSE;
  1104. break;
  1105. }
  1106. rtw_write32(padapter, 0x34, value32);
  1107. }
  1108. return bRet;
  1109. }
  1110. #define EFUSE_CTRL 0x30 /* E-Fuse Control. */
  1111. /* 11/16/2008 MH Read one byte from real Efuse. */
  1112. u8
  1113. efuse_OneByteRead(
  1114. IN PADAPTER pAdapter,
  1115. IN u16 addr,
  1116. IN u8 *data,
  1117. IN BOOLEAN bPseudoTest)
  1118. {
  1119. u32 tmpidx = 0;
  1120. u8 bResult;
  1121. u8 readbyte;
  1122. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  1123. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1124. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1125. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1126. ) {
  1127. /* <20130121, Kordan> For SMIC EFUSE specificatoin. */
  1128. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1129. /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */
  1130. rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
  1131. }
  1132. /* -----------------e-fuse reg ctrl --------------------------------- */
  1133. /* address */
  1134. rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
  1135. rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
  1136. (rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
  1137. /* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */
  1138. /* Write bit 32 0 */
  1139. readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
  1140. rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
  1141. while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
  1142. rtw_mdelay_os(1);
  1143. tmpidx++;
  1144. }
  1145. if (tmpidx < 100) {
  1146. *data = rtw_read8(pAdapter, EFUSE_CTRL);
  1147. bResult = _TRUE;
  1148. } else {
  1149. *data = 0xff;
  1150. bResult = _FALSE;
  1151. RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
  1152. RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
  1153. }
  1154. return bResult;
  1155. }
  1156. static u16
  1157. hal_EfuseGetCurrentSize_BT(
  1158. PADAPTER padapter,
  1159. u8 bPseudoTest)
  1160. {
  1161. #ifdef HAL_EFUSE_MEMORY
  1162. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  1163. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1164. #endif
  1165. u16 btusedbytes;
  1166. u16 efuse_addr;
  1167. u8 bank, startBank;
  1168. u8 hoffset = 0, hworden = 0;
  1169. u8 efuse_data, word_cnts = 0;
  1170. u16 retU2 = 0;
  1171. u8 bContinual = _TRUE;
  1172. btusedbytes = fakeBTEfuseUsedBytes;
  1173. efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
  1174. startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
  1175. RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
  1176. retU2 = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
  1177. for (bank = startBank; bank < 3; bank++) {
  1178. if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
  1179. RTW_ERR("%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
  1180. /* bank = EFUSE_MAX_BANK; */
  1181. break;
  1182. }
  1183. /* only when bank is switched we have to reset the efuse_addr. */
  1184. if (bank != startBank)
  1185. efuse_addr = 0;
  1186. while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
  1187. if (rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data) == _FALSE) {
  1188. RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
  1189. /* bank = EFUSE_MAX_BANK; */
  1190. break;
  1191. }
  1192. RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
  1193. if (efuse_data == 0xFF)
  1194. break;
  1195. if (EXT_HEADER(efuse_data)) {
  1196. hoffset = GET_HDR_OFFSET_2_0(efuse_data);
  1197. efuse_addr++;
  1198. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data);
  1199. RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
  1200. if (ALL_WORDS_DISABLED(efuse_data)) {
  1201. efuse_addr++;
  1202. continue;
  1203. }
  1204. /* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
  1205. hoffset |= ((efuse_data & 0xF0) >> 1);
  1206. hworden = efuse_data & 0x0F;
  1207. } else {
  1208. hoffset = (efuse_data >> 4) & 0x0F;
  1209. hworden = efuse_data & 0x0F;
  1210. }
  1211. RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
  1212. FUNC_ADPT_ARG(padapter), hoffset, hworden);
  1213. word_cnts = Efuse_CalculateWordCnts(hworden);
  1214. /* read next header */
  1215. efuse_addr += (word_cnts * 2) + 1;
  1216. }
  1217. /* Check if we need to check next bank efuse */
  1218. if (efuse_addr < retU2)
  1219. break;/* don't need to check next bank. */
  1220. }
  1221. retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
  1222. fakeBTEfuseUsedBytes = retU2;
  1223. RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
  1224. return retU2;
  1225. }
  1226. static u8
  1227. hal_BT_EfusePgCheckAvailableAddr(
  1228. PADAPTER pAdapter,
  1229. u8 bPseudoTest)
  1230. {
  1231. u16 max_available = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
  1232. u16 current_size = 0;
  1233. RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available);
  1234. current_size = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
  1235. if (current_size >= max_available) {
  1236. RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
  1237. return _FALSE;
  1238. }
  1239. return _TRUE;
  1240. }
  1241. u8 EfusePgPacketWrite_BT(
  1242. PADAPTER pAdapter,
  1243. u8 offset,
  1244. u8 word_en,
  1245. u8 *pData,
  1246. u8 bPseudoTest)
  1247. {
  1248. PGPKT_STRUCT targetPkt;
  1249. u16 startAddr = 0;
  1250. u8 efuseType = EFUSE_BT;
  1251. if (!hal_BT_EfusePgCheckAvailableAddr(pAdapter, bPseudoTest))
  1252. return _FALSE;
  1253. hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
  1254. if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1255. return _FALSE;
  1256. if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1257. return _FALSE;
  1258. if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1259. return _FALSE;
  1260. return _TRUE;
  1261. }
  1262. #else /* !RTW_HALMAC */
  1263. /* ------------------------------------------------------------------------------ */
  1264. #define REG_EFUSE_CTRL 0x0030
  1265. #define EFUSE_CTRL REG_EFUSE_CTRL /* E-Fuse Control. */
  1266. /* ------------------------------------------------------------------------------ */
  1267. VOID efuse_PreUpdateAction(
  1268. PADAPTER pAdapter,
  1269. pu4Byte BackupRegs)
  1270. {
  1271. #if defined(CONFIG_RTL8812A)
  1272. if (IS_HARDWARE_TYPE_8812AU(pAdapter)) {
  1273. /* <20131115, Kordan> Turn off Rx to prevent from being busy when writing the EFUSE. (Asked by Chunchu.)*/
  1274. BackupRegs[0] = phy_query_mac_reg(pAdapter, REG_RCR, bMaskDWord);
  1275. BackupRegs[1] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord);
  1276. BackupRegs[2] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord);
  1277. BackupRegs[3] = phy_query_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord);
  1278. PlatformEFIOWrite4Byte(pAdapter, REG_RCR, 0x1);
  1279. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0, 0);
  1280. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+1, 0);
  1281. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+2, 0);
  1282. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+3, 0);
  1283. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+4, 0);
  1284. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+5, 0);
  1285. /* <20140410, Kordan> 0x11 = 0x4E, lower down LX_SPS0 voltage. (Asked by Chunchu)*/
  1286. phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskByte1, 0x4E);
  1287. }
  1288. #endif
  1289. }
  1290. VOID efuse_PostUpdateAction(
  1291. PADAPTER pAdapter,
  1292. pu4Byte BackupRegs)
  1293. {
  1294. #if defined(CONFIG_RTL8812A)
  1295. if (IS_HARDWARE_TYPE_8812AU(pAdapter)) {
  1296. /* <20131115, Kordan> Turn on Rx and restore the registers. (Asked by Chunchu.)*/
  1297. phy_set_mac_reg(pAdapter, REG_RCR, bMaskDWord, BackupRegs[0]);
  1298. phy_set_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord, BackupRegs[1]);
  1299. phy_set_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord, BackupRegs[2]);
  1300. phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord, BackupRegs[3]);
  1301. }
  1302. #endif
  1303. }
  1304. BOOLEAN
  1305. Efuse_Read1ByteFromFakeContent(
  1306. IN PADAPTER pAdapter,
  1307. IN u16 Offset,
  1308. IN OUT u8 *Value);
  1309. BOOLEAN
  1310. Efuse_Read1ByteFromFakeContent(
  1311. IN PADAPTER pAdapter,
  1312. IN u16 Offset,
  1313. IN OUT u8 *Value)
  1314. {
  1315. if (Offset >= EFUSE_MAX_HW_SIZE)
  1316. return _FALSE;
  1317. /* DbgPrint("Read fake content, offset = %d\n", Offset); */
  1318. if (fakeEfuseBank == 0)
  1319. *Value = fakeEfuseContent[Offset];
  1320. else
  1321. *Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset];
  1322. return _TRUE;
  1323. }
  1324. BOOLEAN
  1325. Efuse_Write1ByteToFakeContent(
  1326. IN PADAPTER pAdapter,
  1327. IN u16 Offset,
  1328. IN u8 Value);
  1329. BOOLEAN
  1330. Efuse_Write1ByteToFakeContent(
  1331. IN PADAPTER pAdapter,
  1332. IN u16 Offset,
  1333. IN u8 Value)
  1334. {
  1335. if (Offset >= EFUSE_MAX_HW_SIZE)
  1336. return _FALSE;
  1337. if (fakeEfuseBank == 0)
  1338. fakeEfuseContent[Offset] = Value;
  1339. else
  1340. fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value;
  1341. return _TRUE;
  1342. }
  1343. /*-----------------------------------------------------------------------------
  1344. * Function: Efuse_PowerSwitch
  1345. *
  1346. * Overview: When we want to enable write operation, we should change to
  1347. * pwr on state. When we stop write, we should switch to 500k mode
  1348. * and disable LDO 2.5V.
  1349. *
  1350. * Input: NONE
  1351. *
  1352. * Output: NONE
  1353. *
  1354. * Return: NONE
  1355. *
  1356. * Revised History:
  1357. * When Who Remark
  1358. * 11/17/2008 MHC Create Version 0.
  1359. *
  1360. *---------------------------------------------------------------------------*/
  1361. VOID
  1362. Efuse_PowerSwitch(
  1363. IN PADAPTER pAdapter,
  1364. IN u8 bWrite,
  1365. IN u8 PwrState)
  1366. {
  1367. pAdapter->hal_func.EfusePowerSwitch(pAdapter, bWrite, PwrState);
  1368. }
  1369. VOID
  1370. BTEfuse_PowerSwitch(
  1371. IN PADAPTER pAdapter,
  1372. IN u8 bWrite,
  1373. IN u8 PwrState)
  1374. {
  1375. if (pAdapter->hal_func.BTEfusePowerSwitch)
  1376. pAdapter->hal_func.BTEfusePowerSwitch(pAdapter, bWrite, PwrState);
  1377. }
  1378. /*-----------------------------------------------------------------------------
  1379. * Function: efuse_GetCurrentSize
  1380. *
  1381. * Overview: Get current efuse size!!!
  1382. *
  1383. * Input: NONE
  1384. *
  1385. * Output: NONE
  1386. *
  1387. * Return: NONE
  1388. *
  1389. * Revised History:
  1390. * When Who Remark
  1391. * 11/16/2008 MHC Create Version 0.
  1392. *
  1393. *---------------------------------------------------------------------------*/
  1394. u16
  1395. Efuse_GetCurrentSize(
  1396. IN PADAPTER pAdapter,
  1397. IN u8 efuseType,
  1398. IN BOOLEAN bPseudoTest)
  1399. {
  1400. u16 ret = 0;
  1401. ret = pAdapter->hal_func.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
  1402. return ret;
  1403. }
  1404. /*
  1405. * Description:
  1406. * Execute E-Fuse read byte operation.
  1407. * Refered from SD1 Richard.
  1408. *
  1409. * Assumption:
  1410. * 1. Boot from E-Fuse and successfully auto-load.
  1411. * 2. PASSIVE_LEVEL (USB interface)
  1412. *
  1413. * Created by Roger, 2008.10.21.
  1414. * */
  1415. VOID
  1416. ReadEFuseByte(
  1417. PADAPTER Adapter,
  1418. u16 _offset,
  1419. u8 *pbuf,
  1420. IN BOOLEAN bPseudoTest)
  1421. {
  1422. u32 value32;
  1423. u8 readbyte;
  1424. u16 retry;
  1425. /* u32 start=rtw_get_current_time(); */
  1426. if (bPseudoTest) {
  1427. Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf);
  1428. return;
  1429. }
  1430. if (IS_HARDWARE_TYPE_8723B(Adapter)) {
  1431. /* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */
  1432. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1433. phy_set_mac_reg(Adapter, EFUSE_TEST, BIT11, 0);
  1434. }
  1435. /* Write Address */
  1436. rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff));
  1437. readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2);
  1438. rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  1439. /* Write bit 32 0 */
  1440. readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3);
  1441. rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
  1442. /* Check bit 32 read-ready */
  1443. retry = 0;
  1444. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1445. /* while(!(((value32 >> 24) & 0xff) & 0x80) && (retry<10)) */
  1446. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  1447. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1448. retry++;
  1449. }
  1450. /* 20100205 Joseph: Add delay suggested by SD1 Victor. */
  1451. /* This fix the problem that Efuse read error in high temperature condition. */
  1452. /* Designer says that there shall be some delay after ready bit is set, or the */
  1453. /* result will always stay on last data we read. */
  1454. rtw_udelay_os(50);
  1455. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1456. *pbuf = (u8)(value32 & 0xff);
  1457. /* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */
  1458. }
  1459. /*
  1460. * Description:
  1461. * 1. Execute E-Fuse read byte operation according as map offset and
  1462. * save to E-Fuse table.
  1463. * 2. Refered from SD1 Richard.
  1464. *
  1465. * Assumption:
  1466. * 1. Boot from E-Fuse and successfully auto-load.
  1467. * 2. PASSIVE_LEVEL (USB interface)
  1468. *
  1469. * Created by Roger, 2008.10.21.
  1470. *
  1471. * 2008/12/12 MH 1. Reorganize code flow and reserve bytes. and add description.
  1472. * 2. Add efuse utilization collect.
  1473. * 2008/12/22 MH Read Efuse must check if we write section 1 data again!!! Sec1
  1474. * write addr must be after sec5.
  1475. * */
  1476. VOID
  1477. efuse_ReadEFuse(
  1478. PADAPTER Adapter,
  1479. u8 efuseType,
  1480. u16 _offset,
  1481. u16 _size_byte,
  1482. u8 *pbuf,
  1483. IN BOOLEAN bPseudoTest
  1484. );
  1485. VOID
  1486. efuse_ReadEFuse(
  1487. PADAPTER Adapter,
  1488. u8 efuseType,
  1489. u16 _offset,
  1490. u16 _size_byte,
  1491. u8 *pbuf,
  1492. IN BOOLEAN bPseudoTest
  1493. )
  1494. {
  1495. Adapter->hal_func.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
  1496. }
  1497. VOID
  1498. EFUSE_GetEfuseDefinition(
  1499. IN PADAPTER pAdapter,
  1500. IN u8 efuseType,
  1501. IN u8 type,
  1502. OUT void *pOut,
  1503. IN BOOLEAN bPseudoTest
  1504. )
  1505. {
  1506. pAdapter->hal_func.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest);
  1507. }
  1508. /* 11/16/2008 MH Read one byte from real Efuse. */
  1509. u8
  1510. efuse_OneByteRead(
  1511. IN PADAPTER pAdapter,
  1512. IN u16 addr,
  1513. IN u8 *data,
  1514. IN BOOLEAN bPseudoTest)
  1515. {
  1516. u32 tmpidx = 0;
  1517. u8 bResult;
  1518. u8 readbyte;
  1519. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  1520. /* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */
  1521. /* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
  1522. if (bPseudoTest) {
  1523. bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data);
  1524. return bResult;
  1525. }
  1526. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1527. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1528. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1529. ) {
  1530. /* <20130121, Kordan> For SMIC EFUSE specificatoin. */
  1531. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1532. /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */
  1533. rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
  1534. }
  1535. /* -----------------e-fuse reg ctrl --------------------------------- */
  1536. /* address */
  1537. rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
  1538. rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
  1539. (rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
  1540. /* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */
  1541. /* Write bit 32 0 */
  1542. readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
  1543. rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
  1544. while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
  1545. rtw_mdelay_os(1);
  1546. tmpidx++;
  1547. }
  1548. if (tmpidx < 100) {
  1549. *data = rtw_read8(pAdapter, EFUSE_CTRL);
  1550. bResult = _TRUE;
  1551. } else {
  1552. *data = 0xff;
  1553. bResult = _FALSE;
  1554. RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
  1555. RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
  1556. }
  1557. return bResult;
  1558. }
  1559. /* 11/16/2008 MH Write one byte to reald Efuse. */
  1560. u8
  1561. efuse_OneByteWrite(
  1562. IN PADAPTER pAdapter,
  1563. IN u16 addr,
  1564. IN u8 data,
  1565. IN BOOLEAN bPseudoTest)
  1566. {
  1567. u8 tmpidx = 0;
  1568. u8 bResult = _FALSE;
  1569. u32 efuseValue = 0;
  1570. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  1571. /* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */
  1572. /* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
  1573. if (bPseudoTest) {
  1574. bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data);
  1575. return bResult;
  1576. }
  1577. Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE);
  1578. /* -----------------e-fuse reg ctrl --------------------------------- */
  1579. /* address */
  1580. efuseValue = rtw_read32(pAdapter, EFUSE_CTRL);
  1581. efuseValue |= (BIT21 | BIT31);
  1582. efuseValue &= ~(0x3FFFF);
  1583. efuseValue |= ((addr << 8 | data) & 0x3FFFF);
  1584. /* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */
  1585. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1586. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1587. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1588. ) {
  1589. /* <20130121, Kordan> For SMIC EFUSE specificatoin. */
  1590. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1591. /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 1); */
  1592. rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11));
  1593. rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data)));
  1594. } else
  1595. rtw_write32(pAdapter, EFUSE_CTRL, efuseValue);
  1596. rtw_mdelay_os(1);
  1597. while ((0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) {
  1598. rtw_mdelay_os(1);
  1599. tmpidx++;
  1600. }
  1601. if (tmpidx < 100)
  1602. bResult = _TRUE;
  1603. else {
  1604. bResult = _FALSE;
  1605. RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n",
  1606. __FUNCTION__, addr, efuseValue, bResult);
  1607. RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
  1608. }
  1609. /* disable Efuse program enable */
  1610. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1611. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1612. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1613. )
  1614. phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT(11), 0);
  1615. Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE);
  1616. return bResult;
  1617. }
  1618. int
  1619. Efuse_PgPacketRead(IN PADAPTER pAdapter,
  1620. IN u8 offset,
  1621. IN u8 *data,
  1622. IN BOOLEAN bPseudoTest)
  1623. {
  1624. int ret = 0;
  1625. ret = pAdapter->hal_func.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest);
  1626. return ret;
  1627. }
  1628. int
  1629. Efuse_PgPacketWrite(IN PADAPTER pAdapter,
  1630. IN u8 offset,
  1631. IN u8 word_en,
  1632. IN u8 *data,
  1633. IN BOOLEAN bPseudoTest)
  1634. {
  1635. int ret;
  1636. ret = pAdapter->hal_func.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
  1637. return ret;
  1638. }
  1639. int
  1640. Efuse_PgPacketWrite_BT(IN PADAPTER pAdapter,
  1641. IN u8 offset,
  1642. IN u8 word_en,
  1643. IN u8 *data,
  1644. IN BOOLEAN bPseudoTest)
  1645. {
  1646. int ret;
  1647. ret = pAdapter->hal_func.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest);
  1648. return ret;
  1649. }
  1650. u8
  1651. Efuse_WordEnableDataWrite(IN PADAPTER pAdapter,
  1652. IN u16 efuse_addr,
  1653. IN u8 word_en,
  1654. IN u8 *data,
  1655. IN BOOLEAN bPseudoTest)
  1656. {
  1657. u8 ret = 0;
  1658. ret = pAdapter->hal_func.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
  1659. return ret;
  1660. }
  1661. static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value)
  1662. {
  1663. return efuse_OneByteRead(padapter, address, value, _FALSE);
  1664. }
  1665. static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value)
  1666. {
  1667. return efuse_OneByteWrite(padapter, address, *value, _FALSE);
  1668. }
  1669. /*
  1670. * read/wirte raw efuse data
  1671. */
  1672. u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data)
  1673. {
  1674. int i = 0;
  1675. u16 real_content_len = 0, max_available_size = 0;
  1676. u8 res = _FAIL ;
  1677. u8(*rw8)(PADAPTER, u16, u8 *);
  1678. u32 backupRegs[4] = {0};
  1679. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&real_content_len, _FALSE);
  1680. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_available_size, _FALSE);
  1681. if (start_addr > real_content_len)
  1682. return _FAIL;
  1683. if (_TRUE == bWrite) {
  1684. if ((start_addr + cnts) > max_available_size)
  1685. return _FAIL;
  1686. rw8 = &efuse_write8;
  1687. } else
  1688. rw8 = &efuse_read8;
  1689. efuse_PreUpdateAction(padapter, backupRegs);
  1690. Efuse_PowerSwitch(padapter, bWrite, _TRUE);
  1691. /* e-fuse one byte read / write */
  1692. for (i = 0; i < cnts; i++) {
  1693. if (start_addr >= real_content_len) {
  1694. res = _FAIL;
  1695. break;
  1696. }
  1697. res = rw8(padapter, start_addr++, data++);
  1698. if (_FAIL == res)
  1699. break;
  1700. }
  1701. Efuse_PowerSwitch(padapter, bWrite, _FALSE);
  1702. efuse_PostUpdateAction(padapter, backupRegs);
  1703. return res;
  1704. }
  1705. /* ------------------------------------------------------------------------------ */
  1706. u16 efuse_GetMaxSize(PADAPTER padapter)
  1707. {
  1708. u16 max_size;
  1709. max_size = 0;
  1710. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
  1711. return max_size;
  1712. }
  1713. /* ------------------------------------------------------------------------------ */
  1714. u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size)
  1715. {
  1716. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  1717. *size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
  1718. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  1719. return _SUCCESS;
  1720. }
  1721. /* ------------------------------------------------------------------------------ */
  1722. u16 efuse_bt_GetMaxSize(PADAPTER padapter)
  1723. {
  1724. u16 max_size;
  1725. max_size = 0;
  1726. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
  1727. return max_size;
  1728. }
  1729. u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size)
  1730. {
  1731. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  1732. *size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE);
  1733. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  1734. return _SUCCESS;
  1735. }
  1736. u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  1737. {
  1738. u16 mapLen = 0;
  1739. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  1740. if ((addr + cnts) > mapLen)
  1741. return _FAIL;
  1742. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  1743. efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE);
  1744. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  1745. return _SUCCESS;
  1746. }
  1747. u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  1748. {
  1749. u16 mapLen = 0;
  1750. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  1751. if ((addr + cnts) > mapLen)
  1752. return _FAIL;
  1753. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  1754. efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE);
  1755. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  1756. return _SUCCESS;
  1757. }
  1758. /* ------------------------------------------------------------------------------ */
  1759. u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  1760. {
  1761. #define RT_ASSERT_RET(expr) \
  1762. if (!(expr)) { \
  1763. printk("Assertion failed! %s at ......\n", #expr); \
  1764. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  1765. return _FAIL; \
  1766. }
  1767. u8 offset, word_en;
  1768. u8 *map;
  1769. u8 newdata[PGPKT_DATA_SIZE];
  1770. s32 i, j, idx, chk_total_byte;
  1771. u8 ret = _SUCCESS;
  1772. u16 mapLen = 0, startAddr = 0, efuse_max_available_len = 0;
  1773. u32 backupRegs[4] = {0};
  1774. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
  1775. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1776. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  1777. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, _FALSE);
  1778. if ((addr + cnts) > mapLen)
  1779. return _FAIL;
  1780. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  1781. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  1782. map = rtw_zmalloc(mapLen);
  1783. if (map == NULL)
  1784. return _FAIL;
  1785. _rtw_memset(map, 0xFF, mapLen);
  1786. ret = rtw_efuse_map_read(padapter, 0, mapLen, map);
  1787. if (ret == _FAIL)
  1788. goto exit;
  1789. if (padapter->registrypriv.boffefusemask == 0) {
  1790. for (i = 0; i < cnts; i++) {
  1791. if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
  1792. if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask. */
  1793. data[i] = map[addr + i];
  1794. } else {
  1795. if (efuse_IsMasked(padapter, addr + i))
  1796. data[i] = map[addr + i];
  1797. }
  1798. RTW_INFO("%s , data[%d] = %x, map[addr+i]= %x\n", __func__, i, data[i], map[addr + i]);
  1799. }
  1800. }
  1801. /*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/
  1802. chk_total_byte = 0;
  1803. idx = 0;
  1804. offset = (addr >> 3);
  1805. while (idx < cnts) {
  1806. word_en = 0xF;
  1807. j = (addr + idx) & 0x7;
  1808. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  1809. if (data[idx] != map[addr + idx])
  1810. word_en &= ~BIT(i >> 1);
  1811. }
  1812. if (word_en != 0xF) {
  1813. chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
  1814. if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
  1815. chk_total_byte += 2;
  1816. else
  1817. chk_total_byte += 1;
  1818. }
  1819. offset++;
  1820. }
  1821. RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
  1822. rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
  1823. if (startAddr == 0) {
  1824. startAddr = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
  1825. RTW_INFO("%s: Efuse_GetCurrentSize startAddr=%#X\n", __func__, startAddr);
  1826. }
  1827. RTW_DBG("%s: startAddr=%#X\n", __func__, startAddr);
  1828. if ((startAddr + chk_total_byte) >= efuse_max_available_len) {
  1829. RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse_max_available_len(0x%X)\n",
  1830. __func__, startAddr, chk_total_byte, efuse_max_available_len);
  1831. ret = _FAIL;
  1832. goto exit;
  1833. }
  1834. efuse_PreUpdateAction(padapter, backupRegs);
  1835. idx = 0;
  1836. offset = (addr >> 3);
  1837. while (idx < cnts) {
  1838. word_en = 0xF;
  1839. j = (addr + idx) & 0x7;
  1840. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  1841. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  1842. if (data[idx] != map[addr + idx]) {
  1843. word_en &= ~BIT(i >> 1);
  1844. newdata[i] = data[idx];
  1845. #ifdef CONFIG_RTL8723B
  1846. if (addr + idx == 0x8) {
  1847. if (IS_C_CUT(pHalData->version_id) || IS_B_CUT(pHalData->version_id)) {
  1848. if (pHalData->adjuseVoltageVal == 6) {
  1849. newdata[i] = map[addr + idx];
  1850. RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]);
  1851. }
  1852. }
  1853. }
  1854. #endif
  1855. }
  1856. }
  1857. if (word_en != 0xF) {
  1858. ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE);
  1859. RTW_INFO("offset=%x\n", offset);
  1860. RTW_INFO("word_en=%x\n", word_en);
  1861. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  1862. RTW_INFO("data=%x \t", newdata[i]);
  1863. if (ret == _FAIL)
  1864. break;
  1865. }
  1866. offset++;
  1867. }
  1868. /*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/
  1869. efuse_PostUpdateAction(padapter, backupRegs);
  1870. exit:
  1871. rtw_mfree(map, mapLen);
  1872. return ret;
  1873. }
  1874. u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  1875. {
  1876. #define RT_ASSERT_RET(expr) \
  1877. if (!(expr)) { \
  1878. printk("Assertion failed! %s at ......\n", #expr); \
  1879. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  1880. return _FAIL; \
  1881. }
  1882. u8 offset, word_en;
  1883. u8 *map;
  1884. u8 newdata[PGPKT_DATA_SIZE];
  1885. s32 i = 0, j = 0, idx;
  1886. u8 ret = _SUCCESS;
  1887. u16 mapLen = 0;
  1888. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  1889. if ((addr + cnts) > mapLen)
  1890. return _FAIL;
  1891. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  1892. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  1893. map = rtw_zmalloc(mapLen);
  1894. if (map == NULL)
  1895. return _FAIL;
  1896. ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map);
  1897. if (ret == _FAIL)
  1898. goto exit;
  1899. RTW_INFO("OFFSET\tVALUE(hex)\n");
  1900. for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
  1901. RTW_INFO("0x%03x\t", i);
  1902. for (j = 0; j < 8; j++)
  1903. RTW_INFO("%02X ", map[i + j]);
  1904. RTW_INFO("\t");
  1905. for (; j < 16; j++)
  1906. RTW_INFO("%02X ", map[i + j]);
  1907. RTW_INFO("\n");
  1908. }
  1909. RTW_INFO("\n");
  1910. Efuse_PowerSwitch(padapter, _TRUE, _TRUE);
  1911. idx = 0;
  1912. offset = (addr >> 3);
  1913. while (idx < cnts) {
  1914. word_en = 0xF;
  1915. j = (addr + idx) & 0x7;
  1916. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  1917. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  1918. if (data[idx] != map[addr + idx]) {
  1919. word_en &= ~BIT(i >> 1);
  1920. newdata[i] = data[idx];
  1921. }
  1922. }
  1923. if (word_en != 0xF) {
  1924. RTW_INFO("offset=%x\n", offset);
  1925. RTW_INFO("word_en=%x\n", word_en);
  1926. RTW_INFO("%s: data=", __FUNCTION__);
  1927. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  1928. RTW_INFO("0x%02X ", newdata[i]);
  1929. RTW_INFO("\n");
  1930. ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE);
  1931. if (ret == _FAIL)
  1932. break;
  1933. }
  1934. offset++;
  1935. }
  1936. Efuse_PowerSwitch(padapter, _TRUE, _FALSE);
  1937. exit:
  1938. rtw_mfree(map, mapLen);
  1939. return ret;
  1940. }
  1941. /*-----------------------------------------------------------------------------
  1942. * Function: Efuse_ReadAllMap
  1943. *
  1944. * Overview: Read All Efuse content
  1945. *
  1946. * Input: NONE
  1947. *
  1948. * Output: NONE
  1949. *
  1950. * Return: NONE
  1951. *
  1952. * Revised History:
  1953. * When Who Remark
  1954. * 11/11/2008 MHC Create Version 0.
  1955. *
  1956. *---------------------------------------------------------------------------*/
  1957. VOID
  1958. Efuse_ReadAllMap(
  1959. IN PADAPTER pAdapter,
  1960. IN u8 efuseType,
  1961. IN OUT u8 *Efuse,
  1962. IN BOOLEAN bPseudoTest);
  1963. VOID
  1964. Efuse_ReadAllMap(
  1965. IN PADAPTER pAdapter,
  1966. IN u8 efuseType,
  1967. IN OUT u8 *Efuse,
  1968. IN BOOLEAN bPseudoTest)
  1969. {
  1970. u16 mapLen = 0;
  1971. Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE);
  1972. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  1973. efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest);
  1974. Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE);
  1975. }
  1976. /*-----------------------------------------------------------------------------
  1977. * Function: efuse_ShadowRead1Byte
  1978. * efuse_ShadowRead2Byte
  1979. * efuse_ShadowRead4Byte
  1980. *
  1981. * Overview: Read from efuse init map by one/two/four bytes !!!!!
  1982. *
  1983. * Input: NONE
  1984. *
  1985. * Output: NONE
  1986. *
  1987. * Return: NONE
  1988. *
  1989. * Revised History:
  1990. * When Who Remark
  1991. * 11/12/2008 MHC Create Version 0.
  1992. *
  1993. *---------------------------------------------------------------------------*/
  1994. static VOID
  1995. efuse_ShadowRead1Byte(
  1996. IN PADAPTER pAdapter,
  1997. IN u16 Offset,
  1998. IN OUT u8 *Value)
  1999. {
  2000. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2001. *Value = pHalData->efuse_eeprom_data[Offset];
  2002. } /* EFUSE_ShadowRead1Byte */
  2003. /* ---------------Read Two Bytes */
  2004. static VOID
  2005. efuse_ShadowRead2Byte(
  2006. IN PADAPTER pAdapter,
  2007. IN u16 Offset,
  2008. IN OUT u16 *Value)
  2009. {
  2010. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2011. *Value = pHalData->efuse_eeprom_data[Offset];
  2012. *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
  2013. } /* EFUSE_ShadowRead2Byte */
  2014. /* ---------------Read Four Bytes */
  2015. static VOID
  2016. efuse_ShadowRead4Byte(
  2017. IN PADAPTER pAdapter,
  2018. IN u16 Offset,
  2019. IN OUT u32 *Value)
  2020. {
  2021. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2022. *Value = pHalData->efuse_eeprom_data[Offset];
  2023. *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
  2024. *Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16;
  2025. *Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24;
  2026. } /* efuse_ShadowRead4Byte */
  2027. /*-----------------------------------------------------------------------------
  2028. * Function: efuse_ShadowWrite1Byte
  2029. * efuse_ShadowWrite2Byte
  2030. * efuse_ShadowWrite4Byte
  2031. *
  2032. * Overview: Write efuse modify map by one/two/four byte.
  2033. *
  2034. * Input: NONE
  2035. *
  2036. * Output: NONE
  2037. *
  2038. * Return: NONE
  2039. *
  2040. * Revised History:
  2041. * When Who Remark
  2042. * 11/12/2008 MHC Create Version 0.
  2043. *
  2044. *---------------------------------------------------------------------------*/
  2045. #ifdef PLATFORM
  2046. static VOID
  2047. efuse_ShadowWrite1Byte(
  2048. IN PADAPTER pAdapter,
  2049. IN u16 Offset,
  2050. IN u8 Value);
  2051. #endif /* PLATFORM */
  2052. static VOID
  2053. efuse_ShadowWrite1Byte(
  2054. IN PADAPTER pAdapter,
  2055. IN u16 Offset,
  2056. IN u8 Value)
  2057. {
  2058. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2059. pHalData->efuse_eeprom_data[Offset] = Value;
  2060. } /* efuse_ShadowWrite1Byte */
  2061. /* ---------------Write Two Bytes */
  2062. static VOID
  2063. efuse_ShadowWrite2Byte(
  2064. IN PADAPTER pAdapter,
  2065. IN u16 Offset,
  2066. IN u16 Value)
  2067. {
  2068. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2069. pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF;
  2070. pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8;
  2071. } /* efuse_ShadowWrite1Byte */
  2072. /* ---------------Write Four Bytes */
  2073. static VOID
  2074. efuse_ShadowWrite4Byte(
  2075. IN PADAPTER pAdapter,
  2076. IN u16 Offset,
  2077. IN u32 Value)
  2078. {
  2079. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2080. pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF);
  2081. pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF);
  2082. pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF);
  2083. pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF);
  2084. } /* efuse_ShadowWrite1Byte */
  2085. /*-----------------------------------------------------------------------------
  2086. * Function: EFUSE_ShadowRead
  2087. *
  2088. * Overview: Read from efuse init map !!!!!
  2089. *
  2090. * Input: NONE
  2091. *
  2092. * Output: NONE
  2093. *
  2094. * Return: NONE
  2095. *
  2096. * Revised History:
  2097. * When Who Remark
  2098. * 11/12/2008 MHC Create Version 0.
  2099. *
  2100. *---------------------------------------------------------------------------*/
  2101. void
  2102. EFUSE_ShadowRead(
  2103. IN PADAPTER pAdapter,
  2104. IN u8 Type,
  2105. IN u16 Offset,
  2106. IN OUT u32 *Value)
  2107. {
  2108. if (Type == 1)
  2109. efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value);
  2110. else if (Type == 2)
  2111. efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value);
  2112. else if (Type == 4)
  2113. efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value);
  2114. } /* EFUSE_ShadowRead */
  2115. /*-----------------------------------------------------------------------------
  2116. * Function: EFUSE_ShadowWrite
  2117. *
  2118. * Overview: Write efuse modify map for later update operation to use!!!!!
  2119. *
  2120. * Input: NONE
  2121. *
  2122. * Output: NONE
  2123. *
  2124. * Return: NONE
  2125. *
  2126. * Revised History:
  2127. * When Who Remark
  2128. * 11/12/2008 MHC Create Version 0.
  2129. *
  2130. *---------------------------------------------------------------------------*/
  2131. VOID
  2132. EFUSE_ShadowWrite(
  2133. IN PADAPTER pAdapter,
  2134. IN u8 Type,
  2135. IN u16 Offset,
  2136. IN OUT u32 Value);
  2137. VOID
  2138. EFUSE_ShadowWrite(
  2139. IN PADAPTER pAdapter,
  2140. IN u8 Type,
  2141. IN u16 Offset,
  2142. IN OUT u32 Value)
  2143. {
  2144. #if (MP_DRIVER == 0)
  2145. return;
  2146. #endif
  2147. if (pAdapter->registrypriv.mp_mode == 0)
  2148. return;
  2149. if (Type == 1)
  2150. efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value);
  2151. else if (Type == 2)
  2152. efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value);
  2153. else if (Type == 4)
  2154. efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value);
  2155. } /* EFUSE_ShadowWrite */
  2156. VOID
  2157. Efuse_InitSomeVar(
  2158. IN PADAPTER pAdapter
  2159. );
  2160. VOID
  2161. Efuse_InitSomeVar(
  2162. IN PADAPTER pAdapter
  2163. )
  2164. {
  2165. u8 i;
  2166. _rtw_memset((PVOID)&fakeEfuseContent[0], 0xff, EFUSE_MAX_HW_SIZE);
  2167. _rtw_memset((PVOID)&fakeEfuseInitMap[0], 0xff, EFUSE_MAX_MAP_LEN);
  2168. _rtw_memset((PVOID)&fakeEfuseModifiedMap[0], 0xff, EFUSE_MAX_MAP_LEN);
  2169. for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
  2170. _rtw_memset((PVOID)&BTEfuseContent[i][0], EFUSE_MAX_HW_SIZE, 0xff);
  2171. _rtw_memset((PVOID)&BTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2172. _rtw_memset((PVOID)&BTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2173. for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
  2174. _rtw_memset((PVOID)&fakeBTEfuseContent[i][0], 0xff, EFUSE_MAX_HW_SIZE);
  2175. _rtw_memset((PVOID)&fakeBTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2176. _rtw_memset((PVOID)&fakeBTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2177. }
  2178. #endif /* !RTW_HALMAC */
  2179. /* 11/16/2008 MH Add description. Get current efuse area enabled word!!. */
  2180. u8
  2181. Efuse_CalculateWordCnts(IN u8 word_en)
  2182. {
  2183. u8 word_cnts = 0;
  2184. if (!(word_en & BIT(0)))
  2185. word_cnts++; /* 0 : write enable */
  2186. if (!(word_en & BIT(1)))
  2187. word_cnts++;
  2188. if (!(word_en & BIT(2)))
  2189. word_cnts++;
  2190. if (!(word_en & BIT(3)))
  2191. word_cnts++;
  2192. return word_cnts;
  2193. }
  2194. /*-----------------------------------------------------------------------------
  2195. * Function: efuse_WordEnableDataRead
  2196. *
  2197. * Overview: Read allowed word in current efuse section data.
  2198. *
  2199. * Input: NONE
  2200. *
  2201. * Output: NONE
  2202. *
  2203. * Return: NONE
  2204. *
  2205. * Revised History:
  2206. * When Who Remark
  2207. * 11/16/2008 MHC Create Version 0.
  2208. * 11/21/2008 MHC Fix Write bug when we only enable late word.
  2209. *
  2210. *---------------------------------------------------------------------------*/
  2211. void
  2212. efuse_WordEnableDataRead(IN u8 word_en,
  2213. IN u8 *sourdata,
  2214. IN u8 *targetdata)
  2215. {
  2216. if (!(word_en & BIT(0))) {
  2217. targetdata[0] = sourdata[0];
  2218. targetdata[1] = sourdata[1];
  2219. }
  2220. if (!(word_en & BIT(1))) {
  2221. targetdata[2] = sourdata[2];
  2222. targetdata[3] = sourdata[3];
  2223. }
  2224. if (!(word_en & BIT(2))) {
  2225. targetdata[4] = sourdata[4];
  2226. targetdata[5] = sourdata[5];
  2227. }
  2228. if (!(word_en & BIT(3))) {
  2229. targetdata[6] = sourdata[6];
  2230. targetdata[7] = sourdata[7];
  2231. }
  2232. }
  2233. /*-----------------------------------------------------------------------------
  2234. * Function: EFUSE_ShadowMapUpdate
  2235. *
  2236. * Overview: Transfer current EFUSE content to shadow init and modify map.
  2237. *
  2238. * Input: NONE
  2239. *
  2240. * Output: NONE
  2241. *
  2242. * Return: NONE
  2243. *
  2244. * Revised History:
  2245. * When Who Remark
  2246. * 11/13/2008 MHC Create Version 0.
  2247. *
  2248. *---------------------------------------------------------------------------*/
  2249. void EFUSE_ShadowMapUpdate(
  2250. IN PADAPTER pAdapter,
  2251. IN u8 efuseType,
  2252. IN BOOLEAN bPseudoTest)
  2253. {
  2254. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2255. u16 mapLen = 0;
  2256. #ifdef RTW_HALMAC
  2257. u8 *efuse_map = NULL;
  2258. int err;
  2259. mapLen = EEPROM_MAX_SIZE;
  2260. efuse_map = pHalData->efuse_eeprom_data;
  2261. /* efuse default content is 0xFF */
  2262. _rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE);
  2263. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  2264. if (!mapLen) {
  2265. RTW_WARN("%s: <ERROR> fail to get efuse size!\n", __FUNCTION__);
  2266. mapLen = EEPROM_MAX_SIZE;
  2267. }
  2268. if (mapLen > EEPROM_MAX_SIZE) {
  2269. RTW_WARN("%s: <ERROR> size of efuse data(%d) is large than expected(%d)!\n",
  2270. __FUNCTION__, mapLen, EEPROM_MAX_SIZE);
  2271. mapLen = EEPROM_MAX_SIZE;
  2272. }
  2273. if (pHalData->bautoload_fail_flag == _FALSE) {
  2274. err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen);
  2275. if (err)
  2276. RTW_ERR("%s: <ERROR> fail to get efuse map!\n", __FUNCTION__);
  2277. }
  2278. #else /* !RTW_HALMAC */
  2279. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  2280. if (pHalData->bautoload_fail_flag == _TRUE)
  2281. _rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen);
  2282. else {
  2283. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2284. if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) {
  2285. #endif
  2286. Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest);
  2287. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2288. storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data);
  2289. }
  2290. #endif
  2291. }
  2292. /* PlatformMoveMemory((PVOID)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */
  2293. /* (PVOID)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */
  2294. #endif /* !RTW_HALMAC */
  2295. rtw_dump_cur_efuse(pAdapter);
  2296. } /* EFUSE_ShadowMapUpdate */
  2297. const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = {
  2298. 0,
  2299. 0,
  2300. (BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2301. (BW_CAP_5M),
  2302. (BW_CAP_10M | BW_CAP_5M),
  2303. (BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2304. (BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2305. (BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2306. };
  2307. const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = {
  2308. 0,
  2309. 0,
  2310. (PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
  2311. (PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
  2312. };
  2313. u8 mac_hidden_wl_func_to_hal_wl_func(u8 func)
  2314. {
  2315. u8 wl_func = 0;
  2316. if (func & BIT0)
  2317. wl_func |= WL_FUNC_MIRACAST;
  2318. if (func & BIT1)
  2319. wl_func |= WL_FUNC_P2P;
  2320. if (func & BIT2)
  2321. wl_func |= WL_FUNC_TDLS;
  2322. if (func & BIT3)
  2323. wl_func |= WL_FUNC_FTM;
  2324. return wl_func;
  2325. }
  2326. #ifdef PLATFORM_LINUX
  2327. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2328. /* #include <rtw_eeprom.h> */
  2329. int isAdaptorInfoFileValid(void)
  2330. {
  2331. return _TRUE;
  2332. }
  2333. int storeAdaptorInfoFile(char *path, u8 *efuse_data)
  2334. {
  2335. int ret = _SUCCESS;
  2336. if (path && efuse_data) {
  2337. ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512);
  2338. if (ret == EEPROM_MAX_SIZE)
  2339. ret = _SUCCESS;
  2340. else
  2341. ret = _FAIL;
  2342. } else {
  2343. RTW_INFO("%s NULL pointer\n", __FUNCTION__);
  2344. ret = _FAIL;
  2345. }
  2346. return ret;
  2347. }
  2348. int retriveAdaptorInfoFile(char *path, u8 *efuse_data)
  2349. {
  2350. int ret = _SUCCESS;
  2351. mm_segment_t oldfs;
  2352. struct file *fp;
  2353. if (path && efuse_data) {
  2354. ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE);
  2355. if (ret == EEPROM_MAX_SIZE)
  2356. ret = _SUCCESS;
  2357. else
  2358. ret = _FAIL;
  2359. #if 0
  2360. if (isAdaptorInfoFileValid())
  2361. return 0;
  2362. else
  2363. return _FAIL;
  2364. #endif
  2365. } else {
  2366. RTW_INFO("%s NULL pointer\n", __FUNCTION__);
  2367. ret = _FAIL;
  2368. }
  2369. return ret;
  2370. }
  2371. #endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
  2372. u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepatch, u8 *buf, u32 len)
  2373. {
  2374. char *ptmpbuf = NULL, *ptr;
  2375. u8 val8;
  2376. u32 count, i, j;
  2377. int err;
  2378. u32 bufsize = 4096;
  2379. ptmpbuf = rtw_zmalloc(bufsize);
  2380. if (ptmpbuf == NULL)
  2381. return _FALSE;
  2382. count = rtw_retrieve_from_file(filepatch, ptmpbuf, bufsize);
  2383. if (count <= 100) {
  2384. rtw_mfree(ptmpbuf, bufsize);
  2385. RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepatch, count);
  2386. return _FALSE;
  2387. }
  2388. i = 0;
  2389. j = 0;
  2390. ptr = ptmpbuf;
  2391. while ((j < len) && (i < count)) {
  2392. if (ptmpbuf[i] == '\0')
  2393. break;
  2394. ptr = strpbrk(&ptmpbuf[i], " \t\n\r");
  2395. if (ptr) {
  2396. if (ptr == &ptmpbuf[i]) {
  2397. i++;
  2398. continue;
  2399. }
  2400. /* Add string terminating null */
  2401. *ptr = 0;
  2402. } else {
  2403. ptr = &ptmpbuf[count-1];
  2404. }
  2405. err = sscanf(&ptmpbuf[i], "%hhx", &val8);
  2406. if (err != 1) {
  2407. RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]);
  2408. } else {
  2409. buf[j] = val8;
  2410. RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]);
  2411. j++;
  2412. }
  2413. i = ptr - ptmpbuf + 1;
  2414. }
  2415. rtw_mfree(ptmpbuf, bufsize);
  2416. RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepatch, count);
  2417. return _TRUE;
  2418. }
  2419. #ifdef CONFIG_EFUSE_CONFIG_FILE
  2420. u32 rtw_read_efuse_from_file(const char *path, u8 *buf, int map_size)
  2421. {
  2422. u32 i;
  2423. u8 c;
  2424. u8 temp[3];
  2425. u8 temp_i;
  2426. u8 end = _FALSE;
  2427. u32 ret = _FAIL;
  2428. u8 *file_data = NULL;
  2429. u32 file_size, read_size, pos = 0;
  2430. u8 *map = NULL;
  2431. if (rtw_is_file_readable_with_size(path, &file_size) != _TRUE) {
  2432. RTW_PRINT("%s %s is not readable\n", __func__, path);
  2433. goto exit;
  2434. }
  2435. file_data = rtw_vmalloc(file_size);
  2436. if (!file_data) {
  2437. RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, file_size);
  2438. goto exit;
  2439. }
  2440. read_size = rtw_retrieve_from_file(path, file_data, file_size);
  2441. if (read_size == 0) {
  2442. RTW_ERR("%s read from %s fail\n", __func__, path);
  2443. goto exit;
  2444. }
  2445. map = rtw_vmalloc(map_size);
  2446. if (!map) {
  2447. RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, map_size);
  2448. goto exit;
  2449. }
  2450. _rtw_memset(map, 0xff, map_size);
  2451. temp[2] = 0; /* end of string '\0' */
  2452. for (i = 0 ; i < map_size ; i++) {
  2453. temp_i = 0;
  2454. while (1) {
  2455. if (pos >= read_size) {
  2456. end = _TRUE;
  2457. break;
  2458. }
  2459. c = file_data[pos++];
  2460. /* bypass spece or eol or null before first hex digit */
  2461. if (temp_i == 0 && (is_eol(c) == _TRUE || is_space(c) == _TRUE || is_null(c) == _TRUE))
  2462. continue;
  2463. if (IsHexDigit(c) == _FALSE) {
  2464. RTW_ERR("%s invalid 8-bit hex format for offset:0x%03x\n", __func__, i);
  2465. goto exit;
  2466. }
  2467. temp[temp_i++] = c;
  2468. if (temp_i == 2) {
  2469. /* parse value */
  2470. if (sscanf(temp, "%hhx", &map[i]) != 1) {
  2471. RTW_ERR("%s sscanf fail for offset:0x%03x\n", __func__, i);
  2472. goto exit;
  2473. }
  2474. break;
  2475. }
  2476. }
  2477. if (end == _TRUE) {
  2478. if (temp_i != 0) {
  2479. RTW_ERR("%s incomplete 8-bit hex format for offset:0x%03x\n", __func__, i);
  2480. goto exit;
  2481. }
  2482. break;
  2483. }
  2484. }
  2485. RTW_PRINT("efuse file:%s, 0x%03x byte content read\n", path, i);
  2486. _rtw_memcpy(buf, map, map_size);
  2487. ret = _SUCCESS;
  2488. exit:
  2489. if (file_data)
  2490. rtw_vmfree(file_data, file_size);
  2491. if (map)
  2492. rtw_vmfree(map, map_size);
  2493. return ret;
  2494. }
  2495. u32 rtw_read_macaddr_from_file(const char *path, u8 *buf)
  2496. {
  2497. u32 i;
  2498. u8 temp[3];
  2499. u32 ret = _FAIL;
  2500. u8 file_data[17];
  2501. u32 read_size, pos = 0;
  2502. u8 addr[ETH_ALEN];
  2503. if (rtw_is_file_readable(path) != _TRUE) {
  2504. RTW_PRINT("%s %s is not readable\n", __func__, path);
  2505. goto exit;
  2506. }
  2507. read_size = rtw_retrieve_from_file(path, file_data, 17);
  2508. if (read_size != 17) {
  2509. RTW_ERR("%s read from %s fail\n", __func__, path);
  2510. goto exit;
  2511. }
  2512. temp[2] = 0; /* end of string '\0' */
  2513. for (i = 0 ; i < ETH_ALEN ; i++) {
  2514. if (IsHexDigit(file_data[i * 3]) == _FALSE || IsHexDigit(file_data[i * 3 + 1]) == _FALSE) {
  2515. RTW_ERR("%s invalid 8-bit hex format for address offset:%u\n", __func__, i);
  2516. goto exit;
  2517. }
  2518. if (i < ETH_ALEN - 1 && file_data[i * 3 + 2] != ':') {
  2519. RTW_ERR("%s invalid separator after address offset:%u\n", __func__, i);
  2520. goto exit;
  2521. }
  2522. temp[0] = file_data[i * 3];
  2523. temp[1] = file_data[i * 3 + 1];
  2524. if (sscanf(temp, "%hhx", &addr[i]) != 1) {
  2525. RTW_ERR("%s sscanf fail for address offset:0x%03x\n", __func__, i);
  2526. goto exit;
  2527. }
  2528. }
  2529. _rtw_memcpy(buf, addr, ETH_ALEN);
  2530. RTW_PRINT("wifi_mac file: %s\n", path);
  2531. #ifdef CONFIG_RTW_DEBUG
  2532. RTW_INFO(MAC_FMT"\n", MAC_ARG(buf));
  2533. #endif
  2534. ret = _SUCCESS;
  2535. exit:
  2536. return ret;
  2537. }
  2538. #endif /* CONFIG_EFUSE_CONFIG_FILE */
  2539. #endif /* PLATFORM_LINUX */