rtw_io.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. *
  19. ******************************************************************************/
  20. /*
  21. The purpose of rtw_io.c
  22. a. provides the API
  23. b. provides the protocol engine
  24. c. provides the software interface between caller and the hardware interface
  25. Compiler Flag Option:
  26. 1. CONFIG_SDIO_HCI:
  27. a. USE_SYNC_IRP: Only sync operations are provided.
  28. b. USE_ASYNC_IRP:Both sync/async operations are provided.
  29. 2. CONFIG_USB_HCI:
  30. a. USE_ASYNC_IRP: Both sync/async operations are provided.
  31. 3. CONFIG_CFIO_HCI:
  32. b. USE_SYNC_IRP: Only sync operations are provided.
  33. Only sync read/rtw_write_mem operations are provided.
  34. jackson@realtek.com.tw
  35. */
  36. #define _RTW_IO_C_
  37. #include <drv_types.h>
  38. #include <hal_data.h>
  39. #if defined(PLATFORM_LINUX) && defined (PLATFORM_WINDOWS)
  40. #error "Shall be Linux or Windows, but not both!\n"
  41. #endif
  42. #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_PLATFORM_RTL8197D)
  43. #define rtw_le16_to_cpu(val) val
  44. #define rtw_le32_to_cpu(val) val
  45. #define rtw_cpu_to_le16(val) val
  46. #define rtw_cpu_to_le32(val) val
  47. #else
  48. #define rtw_le16_to_cpu(val) le16_to_cpu(val)
  49. #define rtw_le32_to_cpu(val) le32_to_cpu(val)
  50. #define rtw_cpu_to_le16(val) cpu_to_le16(val)
  51. #define rtw_cpu_to_le32(val) cpu_to_le32(val)
  52. #endif
  53. u8 _rtw_read8(_adapter *adapter, u32 addr)
  54. {
  55. u8 r_val;
  56. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  57. struct io_priv *pio_priv = &adapter->iopriv;
  58. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  59. u8(*_read8)(struct intf_hdl *pintfhdl, u32 addr);
  60. _read8 = pintfhdl->io_ops._read8;
  61. r_val = _read8(pintfhdl, addr);
  62. return r_val;
  63. }
  64. u16 _rtw_read16(_adapter *adapter, u32 addr)
  65. {
  66. u16 r_val;
  67. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  68. struct io_priv *pio_priv = &adapter->iopriv;
  69. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  70. u16(*_read16)(struct intf_hdl *pintfhdl, u32 addr);
  71. _read16 = pintfhdl->io_ops._read16;
  72. r_val = _read16(pintfhdl, addr);
  73. return rtw_le16_to_cpu(r_val);
  74. }
  75. u32 _rtw_read32(_adapter *adapter, u32 addr)
  76. {
  77. u32 r_val;
  78. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  79. struct io_priv *pio_priv = &adapter->iopriv;
  80. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  81. u32(*_read32)(struct intf_hdl *pintfhdl, u32 addr);
  82. _read32 = pintfhdl->io_ops._read32;
  83. r_val = _read32(pintfhdl, addr);
  84. return rtw_le32_to_cpu(r_val);
  85. }
  86. int _rtw_write8(_adapter *adapter, u32 addr, u8 val)
  87. {
  88. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  89. struct io_priv *pio_priv = &adapter->iopriv;
  90. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  91. int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
  92. int ret;
  93. _write8 = pintfhdl->io_ops._write8;
  94. ret = _write8(pintfhdl, addr, val);
  95. return RTW_STATUS_CODE(ret);
  96. }
  97. int _rtw_write16(_adapter *adapter, u32 addr, u16 val)
  98. {
  99. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  100. struct io_priv *pio_priv = &adapter->iopriv;
  101. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  102. int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
  103. int ret;
  104. _write16 = pintfhdl->io_ops._write16;
  105. val = rtw_cpu_to_le16(val);
  106. ret = _write16(pintfhdl, addr, val);
  107. return RTW_STATUS_CODE(ret);
  108. }
  109. int _rtw_write32(_adapter *adapter, u32 addr, u32 val)
  110. {
  111. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  112. struct io_priv *pio_priv = &adapter->iopriv;
  113. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  114. int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
  115. int ret;
  116. _write32 = pintfhdl->io_ops._write32;
  117. val = rtw_cpu_to_le32(val);
  118. ret = _write32(pintfhdl, addr, val);
  119. return RTW_STATUS_CODE(ret);
  120. }
  121. int _rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *pdata)
  122. {
  123. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  124. struct io_priv *pio_priv = &adapter->iopriv;
  125. struct intf_hdl *pintfhdl = (struct intf_hdl *)(&(pio_priv->intf));
  126. int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr, u32 length, u8 *pdata);
  127. int ret;
  128. _writeN = pintfhdl->io_ops._writeN;
  129. ret = _writeN(pintfhdl, addr, length, pdata);
  130. return RTW_STATUS_CODE(ret);
  131. }
  132. #ifdef CONFIG_SDIO_HCI
  133. u8 _rtw_sd_f0_read8(_adapter *adapter, u32 addr)
  134. {
  135. u8 r_val = 0x00;
  136. struct io_priv *pio_priv = &adapter->iopriv;
  137. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  138. u8(*_sd_f0_read8)(struct intf_hdl *pintfhdl, u32 addr);
  139. _sd_f0_read8 = pintfhdl->io_ops._sd_f0_read8;
  140. if (_sd_f0_read8)
  141. r_val = _sd_f0_read8(pintfhdl, addr);
  142. else
  143. RTW_WARN(FUNC_ADPT_FMT" _sd_f0_read8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  144. return r_val;
  145. }
  146. #ifdef CONFIG_SDIO_INDIRECT_ACCESS
  147. u8 _rtw_sd_iread8(_adapter *adapter, u32 addr)
  148. {
  149. u8 r_val = 0x00;
  150. struct io_priv *pio_priv = &adapter->iopriv;
  151. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  152. u8(*_sd_iread8)(struct intf_hdl *pintfhdl, u32 addr);
  153. _sd_iread8 = pintfhdl->io_ops._sd_iread8;
  154. if (_sd_iread8)
  155. r_val = _sd_iread8(pintfhdl, addr);
  156. else
  157. RTW_ERR(FUNC_ADPT_FMT" _sd_iread8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  158. return r_val;
  159. }
  160. u16 _rtw_sd_iread16(_adapter *adapter, u32 addr)
  161. {
  162. u16 r_val = 0x00;
  163. struct io_priv *pio_priv = &adapter->iopriv;
  164. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  165. u16(*_sd_iread16)(struct intf_hdl *pintfhdl, u32 addr);
  166. _sd_iread16 = pintfhdl->io_ops._sd_iread16;
  167. if (_sd_iread16)
  168. r_val = _sd_iread16(pintfhdl, addr);
  169. else
  170. RTW_ERR(FUNC_ADPT_FMT" _sd_iread16 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  171. return r_val;
  172. }
  173. u32 _rtw_sd_iread32(_adapter *adapter, u32 addr)
  174. {
  175. u32 r_val = 0x00;
  176. struct io_priv *pio_priv = &adapter->iopriv;
  177. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  178. u32(*_sd_iread32)(struct intf_hdl *pintfhdl, u32 addr);
  179. _sd_iread32 = pintfhdl->io_ops._sd_iread32;
  180. if (_sd_iread32)
  181. r_val = _sd_iread32(pintfhdl, addr);
  182. else
  183. RTW_ERR(FUNC_ADPT_FMT" _sd_iread32 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  184. return r_val;
  185. }
  186. int _rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val)
  187. {
  188. struct io_priv *pio_priv = &adapter->iopriv;
  189. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  190. int (*_sd_iwrite8)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
  191. int ret = -1;
  192. _sd_iwrite8 = pintfhdl->io_ops._sd_iwrite8;
  193. if (_sd_iwrite8)
  194. ret = _sd_iwrite8(pintfhdl, addr, val);
  195. else
  196. RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  197. return RTW_STATUS_CODE(ret);
  198. }
  199. int _rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val)
  200. {
  201. struct io_priv *pio_priv = &adapter->iopriv;
  202. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  203. int (*_sd_iwrite16)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
  204. int ret = -1;
  205. _sd_iwrite16 = pintfhdl->io_ops._sd_iwrite16;
  206. if (_sd_iwrite16)
  207. ret = _sd_iwrite16(pintfhdl, addr, val);
  208. else
  209. RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite16 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  210. return RTW_STATUS_CODE(ret);
  211. }
  212. int _rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val)
  213. {
  214. struct io_priv *pio_priv = &adapter->iopriv;
  215. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  216. int (*_sd_iwrite32)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
  217. int ret = -1;
  218. _sd_iwrite32 = pintfhdl->io_ops._sd_iwrite32;
  219. if (_sd_iwrite32)
  220. ret = _sd_iwrite32(pintfhdl, addr, val);
  221. else
  222. RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite32 callback is NULL\n", FUNC_ADPT_ARG(adapter));
  223. return RTW_STATUS_CODE(ret);
  224. }
  225. #endif /* CONFIG_SDIO_INDIRECT_ACCESS */
  226. #endif /* CONFIG_SDIO_HCI */
  227. int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val)
  228. {
  229. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  230. struct io_priv *pio_priv = &adapter->iopriv;
  231. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  232. int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
  233. int ret;
  234. _write8_async = pintfhdl->io_ops._write8_async;
  235. ret = _write8_async(pintfhdl, addr, val);
  236. return RTW_STATUS_CODE(ret);
  237. }
  238. int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val)
  239. {
  240. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  241. struct io_priv *pio_priv = &adapter->iopriv;
  242. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  243. int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
  244. int ret;
  245. _write16_async = pintfhdl->io_ops._write16_async;
  246. val = rtw_cpu_to_le16(val);
  247. ret = _write16_async(pintfhdl, addr, val);
  248. return RTW_STATUS_CODE(ret);
  249. }
  250. int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val)
  251. {
  252. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  253. struct io_priv *pio_priv = &adapter->iopriv;
  254. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  255. int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
  256. int ret;
  257. _write32_async = pintfhdl->io_ops._write32_async;
  258. val = rtw_cpu_to_le32(val);
  259. ret = _write32_async(pintfhdl, addr, val);
  260. return RTW_STATUS_CODE(ret);
  261. }
  262. void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
  263. {
  264. void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
  265. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  266. struct io_priv *pio_priv = &adapter->iopriv;
  267. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  268. if (RTW_CANNOT_RUN(adapter)) {
  269. return;
  270. }
  271. _read_mem = pintfhdl->io_ops._read_mem;
  272. _read_mem(pintfhdl, addr, cnt, pmem);
  273. }
  274. void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
  275. {
  276. void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
  277. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  278. struct io_priv *pio_priv = &adapter->iopriv;
  279. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  280. _write_mem = pintfhdl->io_ops._write_mem;
  281. _write_mem(pintfhdl, addr, cnt, pmem);
  282. }
  283. void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
  284. {
  285. u32(*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
  286. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  287. struct io_priv *pio_priv = &adapter->iopriv;
  288. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  289. if (RTW_CANNOT_RUN(adapter)) {
  290. return;
  291. }
  292. _read_port = pintfhdl->io_ops._read_port;
  293. _read_port(pintfhdl, addr, cnt, pmem);
  294. }
  295. void _rtw_read_port_cancel(_adapter *adapter)
  296. {
  297. void (*_read_port_cancel)(struct intf_hdl *pintfhdl);
  298. struct io_priv *pio_priv = &adapter->iopriv;
  299. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  300. _read_port_cancel = pintfhdl->io_ops._read_port_cancel;
  301. RTW_DISABLE_FUNC(adapter, DF_RX_BIT);
  302. if (_read_port_cancel)
  303. _read_port_cancel(pintfhdl);
  304. }
  305. u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
  306. {
  307. u32(*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
  308. /* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
  309. struct io_priv *pio_priv = &adapter->iopriv;
  310. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  311. u32 ret = _SUCCESS;
  312. _write_port = pintfhdl->io_ops._write_port;
  313. ret = _write_port(pintfhdl, addr, cnt, pmem);
  314. return ret;
  315. }
  316. u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms)
  317. {
  318. int ret = _SUCCESS;
  319. struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem;
  320. struct submit_ctx sctx;
  321. rtw_sctx_init(&sctx, timeout_ms);
  322. pxmitbuf->sctx = &sctx;
  323. ret = _rtw_write_port(adapter, addr, cnt, pmem);
  324. if (ret == _SUCCESS)
  325. ret = rtw_sctx_wait(&sctx, __func__);
  326. return ret;
  327. }
  328. void _rtw_write_port_cancel(_adapter *adapter)
  329. {
  330. void (*_write_port_cancel)(struct intf_hdl *pintfhdl);
  331. struct io_priv *pio_priv = &adapter->iopriv;
  332. struct intf_hdl *pintfhdl = &(pio_priv->intf);
  333. _write_port_cancel = pintfhdl->io_ops._write_port_cancel;
  334. RTW_DISABLE_FUNC(adapter, DF_TX_BIT);
  335. if (_write_port_cancel)
  336. _write_port_cancel(pintfhdl);
  337. }
  338. int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter, struct _io_ops *pops))
  339. {
  340. struct io_priv *piopriv = &padapter->iopriv;
  341. struct intf_hdl *pintf = &piopriv->intf;
  342. if (set_intf_ops == NULL)
  343. return _FAIL;
  344. piopriv->padapter = padapter;
  345. pintf->padapter = padapter;
  346. pintf->pintf_dev = adapter_to_dvobj(padapter);
  347. set_intf_ops(padapter, &pintf->io_ops);
  348. return _SUCCESS;
  349. }
  350. /*
  351. * Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR
  352. * @return _TRUE:
  353. * @return _FALSE:
  354. */
  355. int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj)
  356. {
  357. int ret = _FALSE;
  358. int value;
  359. value = ATOMIC_INC_RETURN(&dvobj->continual_io_error);
  360. if (value > MAX_CONTINUAL_IO_ERR) {
  361. RTW_INFO("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR);
  362. ret = _TRUE;
  363. } else {
  364. /* RTW_INFO("[dvobj:%p] continual_io_error:%d\n", dvobj, value); */
  365. }
  366. return ret;
  367. }
  368. /*
  369. * Set the continual_io_error of this @param dvobjprive to 0
  370. */
  371. void rtw_reset_continual_io_error(struct dvobj_priv *dvobj)
  372. {
  373. ATOMIC_SET(&dvobj->continual_io_error, 0);
  374. }
  375. #ifdef DBG_IO
  376. u32 read_sniff_ranges[][2] = {
  377. /* {0x520, 0x523}, */
  378. };
  379. u32 write_sniff_ranges[][2] = {
  380. /* {0x520, 0x523}, */
  381. /* {0x4c, 0x4c}, */
  382. };
  383. int read_sniff_num = sizeof(read_sniff_ranges) / sizeof(u32) / 2;
  384. int write_sniff_num = sizeof(write_sniff_ranges) / sizeof(u32) / 2;
  385. bool match_read_sniff_ranges(u32 addr, u16 len)
  386. {
  387. int i;
  388. for (i = 0; i < read_sniff_num; i++) {
  389. if (addr + len > read_sniff_ranges[i][0] && addr <= read_sniff_ranges[i][1])
  390. return _TRUE;
  391. }
  392. return _FALSE;
  393. }
  394. bool match_write_sniff_ranges(u32 addr, u16 len)
  395. {
  396. int i;
  397. for (i = 0; i < write_sniff_num; i++) {
  398. if (addr + len > write_sniff_ranges[i][0] && addr <= write_sniff_ranges[i][1])
  399. return _TRUE;
  400. }
  401. return _FALSE;
  402. }
  403. struct rf_sniff_ent {
  404. u8 path;
  405. u16 reg;
  406. u32 mask;
  407. };
  408. struct rf_sniff_ent rf_read_sniff_ranges[] = {
  409. /* example for all path addr 0x55 with all RF Reg mask */
  410. /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */
  411. };
  412. struct rf_sniff_ent rf_write_sniff_ranges[] = {
  413. /* example for all path addr 0x55 with all RF Reg mask */
  414. /* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */
  415. };
  416. int rf_read_sniff_num = sizeof(rf_read_sniff_ranges) / sizeof(struct rf_sniff_ent);
  417. int rf_write_sniff_num = sizeof(rf_write_sniff_ranges) / sizeof(struct rf_sniff_ent);
  418. bool match_rf_read_sniff_ranges(u8 path, u32 addr, u32 mask)
  419. {
  420. int i;
  421. for (i = 0; i < rf_read_sniff_num; i++) {
  422. if (rf_read_sniff_ranges[i].path == MAX_RF_PATH || rf_read_sniff_ranges[i].path == path)
  423. if (addr == rf_read_sniff_ranges[i].reg && (mask & rf_read_sniff_ranges[i].mask))
  424. return _TRUE;
  425. }
  426. return _FALSE;
  427. }
  428. bool match_rf_write_sniff_ranges(u8 path, u32 addr, u32 mask)
  429. {
  430. int i;
  431. for (i = 0; i < rf_write_sniff_num; i++) {
  432. if (rf_write_sniff_ranges[i].path == MAX_RF_PATH || rf_write_sniff_ranges[i].path == path)
  433. if (addr == rf_write_sniff_ranges[i].reg && (mask & rf_write_sniff_ranges[i].mask))
  434. return _TRUE;
  435. }
  436. return _FALSE;
  437. }
  438. u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line)
  439. {
  440. u8 val = _rtw_read8(adapter, addr);
  441. if (match_read_sniff_ranges(addr, 1))
  442. RTW_INFO("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x\n", caller, line, addr, val);
  443. return val;
  444. }
  445. u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line)
  446. {
  447. u16 val = _rtw_read16(adapter, addr);
  448. if (match_read_sniff_ranges(addr, 2))
  449. RTW_INFO("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x\n", caller, line, addr, val);
  450. return val;
  451. }
  452. u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line)
  453. {
  454. u32 val = _rtw_read32(adapter, addr);
  455. if (match_read_sniff_ranges(addr, 4))
  456. RTW_INFO("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x\n", caller, line, addr, val);
  457. return val;
  458. }
  459. int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line)
  460. {
  461. if (match_write_sniff_ranges(addr, 1))
  462. RTW_INFO("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x)\n", caller, line, addr, val);
  463. return _rtw_write8(adapter, addr, val);
  464. }
  465. int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line)
  466. {
  467. if (match_write_sniff_ranges(addr, 2))
  468. RTW_INFO("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x)\n", caller, line, addr, val);
  469. return _rtw_write16(adapter, addr, val);
  470. }
  471. int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line)
  472. {
  473. if (match_write_sniff_ranges(addr, 4))
  474. RTW_INFO("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x)\n", caller, line, addr, val);
  475. return _rtw_write32(adapter, addr, val);
  476. }
  477. int dbg_rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *data, const char *caller, const int line)
  478. {
  479. if (match_write_sniff_ranges(addr, length))
  480. RTW_INFO("DBG_IO %s:%d rtw_writeN(0x%04x, %u)\n", caller, line, addr, length);
  481. return _rtw_writeN(adapter, addr, length, data);
  482. }
  483. #ifdef CONFIG_SDIO_HCI
  484. u8 dbg_rtw_sd_f0_read8(_adapter *adapter, u32 addr, const char *caller, const int line)
  485. {
  486. u8 val = _rtw_sd_f0_read8(adapter, addr);
  487. #if 0
  488. if (match_read_sniff_ranges(addr, 1))
  489. RTW_INFO("DBG_IO %s:%d rtw_sd_f0_read8(0x%04x) return 0x%02x\n", caller, line, addr, val);
  490. #endif
  491. return val;
  492. }
  493. #ifdef CONFIG_SDIO_INDIRECT_ACCESS
  494. u8 dbg_rtw_sd_iread8(_adapter *adapter, u32 addr, const char *caller, const int line)
  495. {
  496. u8 val = rtw_sd_iread8(adapter, addr);
  497. if (match_read_sniff_ranges(addr, 1))
  498. RTW_INFO("DBG_IO %s:%d rtw_sd_iread8(0x%04x) return 0x%02x\n", caller, line, addr, val);
  499. return val;
  500. }
  501. u16 dbg_rtw_sd_iread16(_adapter *adapter, u32 addr, const char *caller, const int line)
  502. {
  503. u16 val = _rtw_sd_iread16(adapter, addr);
  504. if (match_read_sniff_ranges(addr, 2))
  505. RTW_INFO("DBG_IO %s:%d rtw_sd_iread16(0x%04x) return 0x%04x\n", caller, line, addr, val);
  506. return val;
  507. }
  508. u32 dbg_rtw_sd_iread32(_adapter *adapter, u32 addr, const char *caller, const int line)
  509. {
  510. u32 val = _rtw_sd_iread32(adapter, addr);
  511. if (match_read_sniff_ranges(addr, 4))
  512. RTW_INFO("DBG_IO %s:%d rtw_sd_iread32(0x%04x) return 0x%08x\n", caller, line, addr, val);
  513. return val;
  514. }
  515. int dbg_rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line)
  516. {
  517. if (match_write_sniff_ranges(addr, 1))
  518. RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite8(0x%04x, 0x%02x)\n", caller, line, addr, val);
  519. return _rtw_sd_iwrite8(adapter, addr, val);
  520. }
  521. int dbg_rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line)
  522. {
  523. if (match_write_sniff_ranges(addr, 2))
  524. RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite16(0x%04x, 0x%04x)\n", caller, line, addr, val);
  525. return _rtw_sd_iwrite16(adapter, addr, val);
  526. }
  527. int dbg_rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line)
  528. {
  529. if (match_write_sniff_ranges(addr, 4))
  530. RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite32(0x%04x, 0x%08x)\n", caller, line, addr, val);
  531. return _rtw_sd_iwrite32(adapter, addr, val);
  532. }
  533. #endif /* CONFIG_SDIO_INDIRECT_ACCESS */
  534. #endif /* CONFIG_SDIO_HCI */
  535. #endif