rtw_efuse.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2007 - 2017 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. *****************************************************************************/
  15. #define _RTW_EFUSE_C_
  16. #include <drv_types.h>
  17. #include <hal_data.h>
  18. #include "../hal/efuse/efuse_mask.h"
  19. /*------------------------Define local variable------------------------------*/
  20. u8 fakeEfuseBank = {0};
  21. u32 fakeEfuseUsedBytes = {0};
  22. u8 fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0};
  23. u8 fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0};
  24. u8 fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0};
  25. u32 BTEfuseUsedBytes = {0};
  26. u8 BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
  27. u8 BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  28. u8 BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  29. u32 fakeBTEfuseUsedBytes = {0};
  30. u8 fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
  31. u8 fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  32. u8 fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
  33. u8 maskfileBuffer[64];
  34. /*------------------------Define local variable------------------------------*/
  35. BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
  36. {
  37. int r = Offset / 16;
  38. int c = (Offset % 16) / 2;
  39. int result = 0;
  40. if (pAdapter->registrypriv.boffefusemask)
  41. return FALSE;
  42. if (c < 4) /* Upper double word */
  43. result = (maskfileBuffer[r] & (0x10 << c));
  44. else
  45. result = (maskfileBuffer[r] & (0x01 << (c - 4)));
  46. return (result > 0) ? 0 : 1;
  47. }
  48. BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
  49. {
  50. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  51. if (pAdapter->registrypriv.boffefusemask)
  52. return FALSE;
  53. #ifdef CONFIG_USB_HCI
  54. #if defined(CONFIG_RTL8188E)
  55. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  56. return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE;
  57. #endif
  58. #if defined(CONFIG_RTL8812A)
  59. if (IS_HARDWARE_TYPE_8812(pAdapter))
  60. return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE;
  61. #endif
  62. #if defined(CONFIG_RTL8821A)
  63. #if 0
  64. if (IS_HARDWARE_TYPE_8811AU(pAdapter))
  65. return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE;
  66. #endif
  67. if (IS_HARDWARE_TYPE_8821(pAdapter))
  68. return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE;
  69. #endif
  70. #if defined(CONFIG_RTL8192E)
  71. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  72. return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE;
  73. #endif
  74. #if defined(CONFIG_RTL8723B)
  75. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  76. return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE;
  77. #endif
  78. #if defined(CONFIG_RTL8703B)
  79. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  80. return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE;
  81. #endif
  82. #if defined(CONFIG_RTL8814A)
  83. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  84. return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE;
  85. #endif
  86. #if defined(CONFIG_RTL8188F)
  87. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  88. return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE;
  89. #endif
  90. #if defined(CONFIG_RTL8188GTV)
  91. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  92. return (IS_MASKED(8188GTV, _MUSB, Offset)) ? TRUE : FALSE;
  93. #endif
  94. #if defined(CONFIG_RTL8822B)
  95. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  96. return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE;
  97. #endif
  98. #if defined(CONFIG_RTL8723D)
  99. if (IS_HARDWARE_TYPE_8723D(pAdapter))
  100. return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE;
  101. #endif
  102. #if defined(CONFIG_RTL8710B)
  103. if (IS_HARDWARE_TYPE_8710B(pAdapter))
  104. return (IS_MASKED(8710B, _MUSB, Offset)) ? TRUE : FALSE;
  105. #endif
  106. #if defined(CONFIG_RTL8821C)
  107. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  108. return (IS_MASKED(8821C, _MUSB, Offset)) ? TRUE : FALSE;
  109. #endif
  110. #if defined(CONFIG_RTL8192F)
  111. if (IS_HARDWARE_TYPE_8192FU(pAdapter))
  112. return (IS_MASKED(8192F, _MUSB, Offset)) ? TRUE : FALSE;
  113. #endif
  114. #endif /*CONFIG_USB_HCI*/
  115. #ifdef CONFIG_PCI_HCI
  116. #if defined(CONFIG_RTL8188E)
  117. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  118. return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE;
  119. #endif
  120. #if defined(CONFIG_RTL8192E)
  121. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  122. return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE;
  123. #endif
  124. #if defined(CONFIG_RTL8812A)
  125. if (IS_HARDWARE_TYPE_8812(pAdapter))
  126. return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE;
  127. #endif
  128. #if defined(CONFIG_RTL8821A)
  129. if (IS_HARDWARE_TYPE_8821(pAdapter))
  130. return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE;
  131. #endif
  132. #if defined(CONFIG_RTL8723B)
  133. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  134. return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE;
  135. #endif
  136. #if defined(CONFIG_RTL8814A)
  137. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  138. return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE;
  139. #endif
  140. #if defined(CONFIG_RTL8822B)
  141. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  142. return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE;
  143. #endif
  144. #if defined(CONFIG_RTL8821C)
  145. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  146. return (IS_MASKED(8821C, _MPCIE, Offset)) ? TRUE : FALSE;
  147. #endif
  148. #if defined(CONFIG_RTL8192F)
  149. if (IS_HARDWARE_TYPE_8192FE(pAdapter))
  150. return (IS_MASKED(8192F, _MPCIE, Offset)) ? TRUE : FALSE;
  151. #endif
  152. #endif /*CONFIG_PCI_HCI*/
  153. #ifdef CONFIG_SDIO_HCI
  154. #ifdef CONFIG_RTL8188E_SDIO
  155. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  156. return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE;
  157. #endif
  158. #ifdef CONFIG_RTL8723B
  159. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  160. return (IS_MASKED(8723B, _MSDIO, Offset)) ? TRUE : FALSE;
  161. #endif
  162. #ifdef CONFIG_RTL8188F
  163. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  164. return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE;
  165. #endif
  166. #ifdef CONFIG_RTL8188GTV
  167. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  168. return (IS_MASKED(8188GTV, _MSDIO, Offset)) ? TRUE : FALSE;
  169. #endif
  170. #ifdef CONFIG_RTL8192E
  171. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  172. return (IS_MASKED(8192E, _MSDIO, Offset)) ? TRUE : FALSE;
  173. #endif
  174. #if defined(CONFIG_RTL8821A)
  175. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  176. return (IS_MASKED(8821A, _MSDIO, Offset)) ? TRUE : FALSE;
  177. #endif
  178. #if defined(CONFIG_RTL8821C)
  179. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  180. return (IS_MASKED(8821C, _MSDIO, Offset)) ? TRUE : FALSE;
  181. #endif
  182. #if defined(CONFIG_RTL8822B)
  183. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  184. return (IS_MASKED(8822B, _MSDIO, Offset)) ? TRUE : FALSE;
  185. #endif
  186. #if defined(CONFIG_RTL8192F)
  187. if (IS_HARDWARE_TYPE_8192FS(pAdapter))
  188. return (IS_MASKED(8192F, _MSDIO, Offset)) ? TRUE : FALSE;
  189. #endif
  190. #endif /*CONFIG_SDIO_HCI*/
  191. return FALSE;
  192. }
  193. void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
  194. {
  195. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  196. #ifdef CONFIG_USB_HCI
  197. #if defined(CONFIG_RTL8188E)
  198. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  199. GET_MASK_ARRAY(8188E, _MUSB, pArray);
  200. #endif
  201. #if defined(CONFIG_RTL8812A)
  202. if (IS_HARDWARE_TYPE_8812(pAdapter))
  203. GET_MASK_ARRAY(8812A, _MUSB, pArray);
  204. #endif
  205. #if defined(CONFIG_RTL8821A)
  206. if (IS_HARDWARE_TYPE_8821(pAdapter))
  207. GET_MASK_ARRAY(8821A, _MUSB, pArray);
  208. #endif
  209. #if defined(CONFIG_RTL8192E)
  210. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  211. GET_MASK_ARRAY(8192E, _MUSB, pArray);
  212. #endif
  213. #if defined(CONFIG_RTL8723B)
  214. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  215. GET_MASK_ARRAY(8723B, _MUSB, pArray);
  216. #endif
  217. #if defined(CONFIG_RTL8703B)
  218. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  219. GET_MASK_ARRAY(8703B, _MUSB, pArray);
  220. #endif
  221. #if defined(CONFIG_RTL8188F)
  222. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  223. GET_MASK_ARRAY(8188F, _MUSB, pArray);
  224. #endif
  225. #if defined(CONFIG_RTL8188GTV)
  226. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  227. GET_MASK_ARRAY(8188GTV, _MUSB, pArray);
  228. #endif
  229. #if defined(CONFIG_RTL8814A)
  230. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  231. GET_MASK_ARRAY(8814A, _MUSB, pArray);
  232. #endif
  233. #if defined(CONFIG_RTL8822B)
  234. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  235. GET_MASK_ARRAY(8822B, _MUSB, pArray);
  236. #endif
  237. #if defined(CONFIG_RTL8821C)
  238. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  239. GET_MASK_ARRAY(8821C, _MUSB, pArray);
  240. #endif
  241. #if defined(CONFIG_RTL8192F)
  242. if (IS_HARDWARE_TYPE_8192FU(pAdapter))
  243. GET_MASK_ARRAY(8192F, _MUSB, pArray);
  244. #endif
  245. #endif /*CONFIG_USB_HCI*/
  246. #ifdef CONFIG_PCI_HCI
  247. #if defined(CONFIG_RTL8188E)
  248. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  249. GET_MASK_ARRAY(8188E, _MPCIE, pArray);
  250. #endif
  251. #if defined(CONFIG_RTL8192E)
  252. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  253. GET_MASK_ARRAY(8192E, _MPCIE, pArray);
  254. #endif
  255. #if defined(CONFIG_RTL8812A)
  256. if (IS_HARDWARE_TYPE_8812(pAdapter))
  257. GET_MASK_ARRAY(8812A, _MPCIE, pArray);
  258. #endif
  259. #if defined(CONFIG_RTL8821A)
  260. if (IS_HARDWARE_TYPE_8821(pAdapter))
  261. GET_MASK_ARRAY(8821A, _MPCIE, pArray);
  262. #endif
  263. #if defined(CONFIG_RTL8723B)
  264. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  265. GET_MASK_ARRAY(8723B, _MPCIE, pArray);
  266. #endif
  267. #if defined(CONFIG_RTL8814A)
  268. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  269. GET_MASK_ARRAY(8814A, _MPCIE, pArray);
  270. #endif
  271. #if defined(CONFIG_RTL8822B)
  272. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  273. GET_MASK_ARRAY(8822B, _MPCIE, pArray);
  274. #endif
  275. #if defined(CONFIG_RTL8821C)
  276. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  277. GET_MASK_ARRAY(8821C, _MPCIE, pArray);
  278. #endif
  279. #if defined(CONFIG_RTL8192F)
  280. if (IS_HARDWARE_TYPE_8192FE(pAdapter))
  281. GET_MASK_ARRAY(8192F, _MPCIE, pArray);
  282. #endif
  283. #endif /*CONFIG_PCI_HCI*/
  284. #ifdef CONFIG_SDIO_HCI
  285. #if defined(CONFIG_RTL8188E)
  286. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  287. GET_MASK_ARRAY(8188E, _MSDIO, pArray);
  288. #endif
  289. #if defined(CONFIG_RTL8723B)
  290. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  291. GET_MASK_ARRAY(8723B, _MSDIO, pArray);
  292. #endif
  293. #if defined(CONFIG_RTL8188F)
  294. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  295. GET_MASK_ARRAY(8188F, _MSDIO, pArray);
  296. #endif
  297. #if defined(CONFIG_RTL8188GTV)
  298. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  299. GET_MASK_ARRAY(8188GTV, _MSDIO, pArray);
  300. #endif
  301. #if defined(CONFIG_RTL8192E)
  302. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  303. GET_MASK_ARRAY(8192E, _MSDIO, pArray);
  304. #endif
  305. #if defined(CONFIG_RTL8821A)
  306. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  307. GET_MASK_ARRAY(8821A, _MSDIO, pArray);
  308. #endif
  309. #if defined(CONFIG_RTL8821C)
  310. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  311. GET_MASK_ARRAY(8821C , _MSDIO, pArray);
  312. #endif
  313. #if defined(CONFIG_RTL8822B)
  314. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  315. GET_MASK_ARRAY(8822B , _MSDIO, pArray);
  316. #endif
  317. #if defined(CONFIG_RTL8192F)
  318. if (IS_HARDWARE_TYPE_8192FS(pAdapter))
  319. GET_MASK_ARRAY(8192F, _MSDIO, pArray);
  320. #endif
  321. #endif /*CONFIG_SDIO_HCI*/
  322. }
  323. u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)
  324. {
  325. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  326. #ifdef CONFIG_USB_HCI
  327. #if defined(CONFIG_RTL8188E)
  328. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  329. return GET_MASK_ARRAY_LEN(8188E, _MUSB);
  330. #endif
  331. #if defined(CONFIG_RTL8812A)
  332. if (IS_HARDWARE_TYPE_8812(pAdapter))
  333. return GET_MASK_ARRAY_LEN(8812A, _MUSB);
  334. #endif
  335. #if defined(CONFIG_RTL8821A)
  336. if (IS_HARDWARE_TYPE_8821(pAdapter))
  337. return GET_MASK_ARRAY_LEN(8821A, _MUSB);
  338. #endif
  339. #if defined(CONFIG_RTL8192E)
  340. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  341. return GET_MASK_ARRAY_LEN(8192E, _MUSB);
  342. #endif
  343. #if defined(CONFIG_RTL8723B)
  344. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  345. return GET_MASK_ARRAY_LEN(8723B, _MUSB);
  346. #endif
  347. #if defined(CONFIG_RTL8703B)
  348. if (IS_HARDWARE_TYPE_8703B(pAdapter))
  349. return GET_MASK_ARRAY_LEN(8703B, _MUSB);
  350. #endif
  351. #if defined(CONFIG_RTL8188F)
  352. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  353. return GET_MASK_ARRAY_LEN(8188F, _MUSB);
  354. #endif
  355. #if defined(CONFIG_RTL8188GTV)
  356. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  357. return GET_MASK_ARRAY_LEN(8188GTV, _MUSB);
  358. #endif
  359. #if defined(CONFIG_RTL8814A)
  360. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  361. return GET_MASK_ARRAY_LEN(8814A, _MUSB);
  362. #endif
  363. #if defined(CONFIG_RTL8822B)
  364. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  365. return GET_MASK_ARRAY_LEN(8822B, _MUSB);
  366. #endif
  367. #if defined(CONFIG_RTL8821C)
  368. if (IS_HARDWARE_TYPE_8821CU(pAdapter))
  369. return GET_MASK_ARRAY_LEN(8821C, _MUSB);
  370. #endif
  371. #if defined(CONFIG_RTL8192F)
  372. if (IS_HARDWARE_TYPE_8192FU(pAdapter))
  373. return GET_MASK_ARRAY_LEN(8192F, _MUSB);
  374. #endif
  375. #endif /*CONFIG_USB_HCI*/
  376. #ifdef CONFIG_PCI_HCI
  377. #if defined(CONFIG_RTL8188E)
  378. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  379. return GET_MASK_ARRAY_LEN(8188E, _MPCIE);
  380. #endif
  381. #if defined(CONFIG_RTL8192E)
  382. if (IS_HARDWARE_TYPE_8192E(pAdapter))
  383. return GET_MASK_ARRAY_LEN(8192E, _MPCIE);
  384. #endif
  385. #if defined(CONFIG_RTL8812A)
  386. if (IS_HARDWARE_TYPE_8812(pAdapter))
  387. return GET_MASK_ARRAY_LEN(8812A, _MPCIE);
  388. #endif
  389. #if defined(CONFIG_RTL8821A)
  390. if (IS_HARDWARE_TYPE_8821(pAdapter))
  391. return GET_MASK_ARRAY_LEN(8821A, _MPCIE);
  392. #endif
  393. #if defined(CONFIG_RTL8723B)
  394. if (IS_HARDWARE_TYPE_8723B(pAdapter))
  395. return GET_MASK_ARRAY_LEN(8723B, _MPCIE);
  396. #endif
  397. #if defined(CONFIG_RTL8814A)
  398. if (IS_HARDWARE_TYPE_8814A(pAdapter))
  399. return GET_MASK_ARRAY_LEN(8814A, _MPCIE);
  400. #endif
  401. #if defined(CONFIG_RTL8822B)
  402. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  403. return GET_MASK_ARRAY_LEN(8822B, _MPCIE);
  404. #endif
  405. #if defined(CONFIG_RTL8821C)
  406. if (IS_HARDWARE_TYPE_8821CE(pAdapter))
  407. return GET_MASK_ARRAY_LEN(8821C, _MPCIE);
  408. #endif
  409. #if defined(CONFIG_RTL8192F)
  410. if (IS_HARDWARE_TYPE_8192FE(pAdapter))
  411. return GET_MASK_ARRAY_LEN(8192F, _MPCIE);
  412. #endif
  413. #endif /*CONFIG_PCI_HCI*/
  414. #ifdef CONFIG_SDIO_HCI
  415. #if defined(CONFIG_RTL8188E)
  416. if (IS_HARDWARE_TYPE_8188E(pAdapter))
  417. return GET_MASK_ARRAY_LEN(8188E, _MSDIO);
  418. #endif
  419. #if defined(CONFIG_RTL8723B)
  420. if (IS_HARDWARE_TYPE_8723BS(pAdapter))
  421. return GET_MASK_ARRAY_LEN(8723B, _MSDIO);
  422. #endif
  423. #if defined(CONFIG_RTL8188F)
  424. if (IS_HARDWARE_TYPE_8188F(pAdapter))
  425. return GET_MASK_ARRAY_LEN(8188F, _MSDIO);
  426. #endif
  427. #if defined(CONFIG_RTL8188GTV)
  428. if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
  429. return GET_MASK_ARRAY_LEN(8188GTV, _MSDIO);
  430. #endif
  431. #if defined(CONFIG_RTL8192E)
  432. if (IS_HARDWARE_TYPE_8192ES(pAdapter))
  433. return GET_MASK_ARRAY_LEN(8192E, _MSDIO);
  434. #endif
  435. #if defined(CONFIG_RTL8821A)
  436. if (IS_HARDWARE_TYPE_8821S(pAdapter))
  437. return GET_MASK_ARRAY_LEN(8821A, _MSDIO);
  438. #endif
  439. #if defined(CONFIG_RTL8821C)
  440. if (IS_HARDWARE_TYPE_8821CS(pAdapter))
  441. return GET_MASK_ARRAY_LEN(8821C, _MSDIO);
  442. #endif
  443. #if defined(CONFIG_RTL8822B)
  444. if (IS_HARDWARE_TYPE_8822B(pAdapter))
  445. return GET_MASK_ARRAY_LEN(8822B, _MSDIO);
  446. #endif
  447. #if defined(CONFIG_RTL8192F)
  448. if (IS_HARDWARE_TYPE_8192FS(pAdapter))
  449. return GET_MASK_ARRAY_LEN(8192F, _MSDIO);
  450. #endif
  451. #endif/*CONFIG_SDIO_HCI*/
  452. return 0;
  453. }
  454. static void rtw_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  455. {
  456. u16 i = 0;
  457. if (padapter->registrypriv.boffefusemask == 0) {
  458. for (i = 0; i < cnts; i++) {
  459. if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
  460. if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask.*/
  461. data[i] = 0xff;
  462. } else {
  463. /*RTW_INFO(" %s , data[%d] = %x\n", __func__, i, data[i]);*/
  464. if (efuse_IsMasked(padapter, addr + i)) {
  465. data[i] = 0xff;
  466. /*RTW_INFO(" %s ,mask data[%d] = %x\n", __func__, i, data[i]);*/
  467. }
  468. }
  469. }
  470. }
  471. }
  472. u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  473. {
  474. u8 ret = _SUCCESS;
  475. u16 mapLen = 0;
  476. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  477. ret = rtw_efuse_map_read(padapter, addr, cnts , data);
  478. rtw_mask_map_read(padapter, addr, cnts , data);
  479. return ret;
  480. }
  481. /* ***********************************************************
  482. * Efuse related code
  483. * *********************************************************** */
  484. static u8 hal_EfuseSwitchToBank(
  485. PADAPTER padapter,
  486. u8 bank,
  487. u8 bPseudoTest)
  488. {
  489. u8 bRet = _FALSE;
  490. u32 value32 = 0;
  491. #ifdef HAL_EFUSE_MEMORY
  492. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  493. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  494. #endif
  495. RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
  496. if (bPseudoTest) {
  497. #ifdef HAL_EFUSE_MEMORY
  498. pEfuseHal->fakeEfuseBank = bank;
  499. #else
  500. fakeEfuseBank = bank;
  501. #endif
  502. bRet = _TRUE;
  503. } else {
  504. value32 = rtw_read32(padapter, 0x34);
  505. bRet = _TRUE;
  506. switch (bank) {
  507. case 0:
  508. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
  509. break;
  510. case 1:
  511. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
  512. break;
  513. case 2:
  514. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
  515. break;
  516. case 3:
  517. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
  518. break;
  519. default:
  520. value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
  521. bRet = _FALSE;
  522. break;
  523. }
  524. rtw_write32(padapter, 0x34, value32);
  525. }
  526. return bRet;
  527. }
  528. void rtw_efuse_analyze(PADAPTER padapter, u8 Type, u8 Fake)
  529. {
  530. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
  531. PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
  532. u16 eFuse_Addr = 0;
  533. u8 offset, wden;
  534. u16 i, j;
  535. u8 u1temp = 0;
  536. u8 efuseHeader = 0, efuseExtHdr = 0, efuseData[EFUSE_MAX_WORD_UNIT*2] = {0}, dataCnt = 0;
  537. u16 efuseHeader2Byte = 0;
  538. u8 *eFuseWord = NULL;// [EFUSE_MAX_SECTION_NUM][EFUSE_MAX_WORD_UNIT];
  539. u8 offset_2_0 = 0;
  540. u8 pgSectionCnt = 0;
  541. u8 wd_cnt = 0;
  542. u8 max_section = 64;
  543. u16 mapLen = 0, maprawlen = 0;
  544. boolean bExtHeader = _FALSE;
  545. u8 efuseType = EFUSE_WIFI;
  546. boolean bPseudoTest = _FALSE;
  547. u8 bank = 0, startBank = 0, endBank = 1-1;
  548. boolean bCheckNextBank = FALSE;
  549. u8 protectBytesBank = 0;
  550. u16 efuse_max = 0;
  551. u8 ParseEfuseExtHdr, ParseEfuseHeader, ParseOffset, ParseWDEN, ParseOffset2_0;
  552. eFuseWord = rtw_zmalloc(EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
  553. RTW_INFO("\n");
  554. if (Type == 0) {
  555. if (Fake == 0) {
  556. RTW_INFO("\n\tEFUSE_Analyze Wifi Content\n");
  557. efuseType = EFUSE_WIFI;
  558. bPseudoTest = FALSE;
  559. startBank = 0;
  560. endBank = 0;
  561. } else {
  562. RTW_INFO("\n\tEFUSE_Analyze Wifi Pseudo Content\n");
  563. efuseType = EFUSE_WIFI;
  564. bPseudoTest = TRUE;
  565. startBank = 0;
  566. endBank = 0;
  567. }
  568. } else {
  569. if (Fake == 0) {
  570. RTW_INFO("\n\tEFUSE_Analyze BT Content\n");
  571. efuseType = EFUSE_BT;
  572. bPseudoTest = FALSE;
  573. startBank = 1;
  574. endBank = EFUSE_MAX_BANK - 1;
  575. } else {
  576. RTW_INFO("\n\tEFUSE_Analyze BT Pseudo Content\n");
  577. efuseType = EFUSE_BT;
  578. bPseudoTest = TRUE;
  579. startBank = 1;
  580. endBank = EFUSE_MAX_BANK - 1;
  581. if (IS_HARDWARE_TYPE_8821(padapter))
  582. endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
  583. }
  584. }
  585. RTW_INFO("\n\r 1Byte header, [7:4]=offset, [3:0]=word enable\n");
  586. RTW_INFO("\n\r 2Byte header, header[7:5]=offset[2:0], header[4:0]=0x0F\n");
  587. RTW_INFO("\n\r 2Byte header, extHeader[7:4]=offset[6:3], extHeader[3:0]=word enable\n");
  588. EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  589. EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAX_SECTION, (PVOID)&max_section, bPseudoTest);
  590. EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_PROTECT_BYTES_BANK, (PVOID)&protectBytesBank, bPseudoTest);
  591. EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, (PVOID)&efuse_max, bPseudoTest);
  592. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&maprawlen, _FALSE);
  593. _rtw_memset(eFuseWord, 0xff, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
  594. _rtw_memset(pEfuseHal->fakeEfuseInitMap, 0xff, EFUSE_MAX_MAP_LEN);
  595. if (IS_HARDWARE_TYPE_8821(padapter))
  596. endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
  597. for (bank = startBank; bank <= endBank; bank++) {
  598. if (!hal_EfuseSwitchToBank(padapter, bank, bPseudoTest)) {
  599. RTW_INFO("EFUSE_SwitchToBank() Fail!!\n");
  600. return;
  601. }
  602. eFuse_Addr = bank * EFUSE_MAX_BANK_SIZE;
  603. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
  604. if (efuseHeader == 0xFF && bank == startBank && Fake != TRUE) {
  605. RTW_INFO("Non-PGed Efuse\n");
  606. return;
  607. }
  608. RTW_INFO("EFUSE_REAL_CONTENT_LEN = %d\n", maprawlen);
  609. while ((efuseHeader != 0xFF) && ((efuseType == EFUSE_WIFI && (eFuse_Addr < maprawlen)) || (efuseType == EFUSE_BT && (eFuse_Addr < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
  610. RTW_INFO("Analyzing: Offset: 0x%X\n", eFuse_Addr);
  611. /* Check PG header for section num.*/
  612. if (EXT_HEADER(efuseHeader)) {
  613. bExtHeader = TRUE;
  614. offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
  615. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
  616. if (efuseExtHdr != 0xff) {
  617. if (ALL_WORDS_DISABLED(efuseExtHdr)) {
  618. /* Read next pg header*/
  619. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
  620. continue;
  621. } else {
  622. offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
  623. wden = (efuseExtHdr & 0x0F);
  624. efuseHeader2Byte = (efuseExtHdr<<8)|efuseHeader;
  625. RTW_INFO("Find efuseHeader2Byte = 0x%04X, offset=%d, wden=0x%x\n",
  626. efuseHeader2Byte, offset, wden);
  627. }
  628. } else {
  629. RTW_INFO("Error, efuse[%d]=0xff, efuseExtHdr=0xff\n", eFuse_Addr-1);
  630. break;
  631. }
  632. } else {
  633. offset = ((efuseHeader >> 4) & 0x0f);
  634. wden = (efuseHeader & 0x0f);
  635. }
  636. _rtw_memset(efuseData, '\0', EFUSE_MAX_WORD_UNIT * 2);
  637. dataCnt = 0;
  638. if (offset < max_section) {
  639. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  640. /* Check word enable condition in the section */
  641. if (!(wden & (0x01<<i))) {
  642. if (!((efuseType == EFUSE_WIFI && (eFuse_Addr + 2 < maprawlen)) ||
  643. (efuseType == EFUSE_BT && (eFuse_Addr + 2 < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
  644. RTW_INFO("eFuse_Addr exceeds, break\n");
  645. break;
  646. }
  647. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
  648. eFuseWord[(offset * 8) + (i * 2)] = (efuseData[dataCnt - 1]);
  649. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
  650. eFuseWord[(offset * 8) + (i * 2 + 1)] = (efuseData[dataCnt - 1]);
  651. }
  652. }
  653. }
  654. if (bExtHeader) {
  655. RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
  656. RTW_INFO("[ %04X ], [", efuseHeader2Byte);
  657. } else {
  658. RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
  659. RTW_INFO("[ %02X ], [", efuseHeader);
  660. }
  661. for (j = 0; j < dataCnt; j++)
  662. RTW_INFO(" %02X ", efuseData[j]);
  663. RTW_INFO("]\n");
  664. if (bExtHeader) {
  665. ParseEfuseExtHdr = (efuseHeader2Byte & 0xff00) >> 8;
  666. ParseEfuseHeader = (efuseHeader2Byte & 0xff);
  667. ParseOffset2_0 = GET_HDR_OFFSET_2_0(ParseEfuseHeader);
  668. ParseOffset = ((ParseEfuseExtHdr & 0xF0) >> 1) | ParseOffset2_0;
  669. ParseWDEN = (ParseEfuseExtHdr & 0x0F);
  670. RTW_INFO("Header=0x%x, ExtHeader=0x%x, ", ParseEfuseHeader, ParseEfuseExtHdr);
  671. } else {
  672. ParseEfuseHeader = efuseHeader;
  673. ParseOffset = ((ParseEfuseHeader >> 4) & 0x0f);
  674. ParseWDEN = (ParseEfuseHeader & 0x0f);
  675. RTW_INFO("Header=0x%x, ", ParseEfuseHeader);
  676. }
  677. RTW_INFO("offset=0x%x(%d), word enable=0x%x\n", ParseOffset, ParseOffset, ParseWDEN);
  678. wd_cnt = 0;
  679. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  680. if (!(wden & (0x01 << i))) {
  681. RTW_INFO("Map[ %02X ] = %02X %02X\n", ((offset * EFUSE_MAX_WORD_UNIT * 2) + (i * 2)), efuseData[wd_cnt * 2 + 0], efuseData[wd_cnt * 2 + 1]);
  682. wd_cnt++;
  683. }
  684. }
  685. pgSectionCnt++;
  686. bExtHeader = FALSE;
  687. efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
  688. if (efuseHeader == 0xFF) {
  689. if ((eFuse_Addr + protectBytesBank) >= efuse_max)
  690. bCheckNextBank = TRUE;
  691. else
  692. bCheckNextBank = FALSE;
  693. }
  694. }
  695. if (!bCheckNextBank) {
  696. RTW_INFO("Not need to check next bank, eFuse_Addr=%d, protectBytesBank=%d, efuse_max=%d\n",
  697. eFuse_Addr, protectBytesBank, efuse_max);
  698. break;
  699. }
  700. }
  701. /* switch bank back to 0 for BT/wifi later use*/
  702. hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
  703. /* 3. Collect 16 sections and 4 word unit into Efuse map.*/
  704. for (i = 0; i < max_section; i++) {
  705. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  706. pEfuseHal->fakeEfuseInitMap[(i*8)+(j*2)] = (eFuseWord[(i*8)+(j*2)]);
  707. pEfuseHal->fakeEfuseInitMap[(i*8)+((j*2)+1)] = (eFuseWord[(i*8)+((j*2)+1)]);
  708. }
  709. }
  710. RTW_INFO("\n\tEFUSE Analyze Map\n");
  711. i = 0;
  712. j = 0;
  713. for (i = 0; i < mapLen; i++) {
  714. if (i % 16 == 0)
  715. RTW_PRINT_SEL(RTW_DBGDUMP, "0x%03x: ", i);
  716. _RTW_PRINT_SEL(RTW_DBGDUMP, "%02X%s"
  717. , pEfuseHal->fakeEfuseInitMap[i]
  718. , ((i + 1) % 16 == 0) ? "\n" : (((i + 1) % 8 == 0) ? " " : " ")
  719. );
  720. }
  721. _RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
  722. if (eFuseWord)
  723. rtw_mfree((u8 *)eFuseWord, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
  724. }
  725. VOID efuse_PreUpdateAction(
  726. PADAPTER pAdapter,
  727. pu4Byte BackupRegs)
  728. {
  729. if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
  730. /* <20131115, Kordan> Turn off Rx to prevent from being busy when writing the EFUSE. (Asked by Chunchu.)*/
  731. BackupRegs[0] = phy_query_mac_reg(pAdapter, REG_RCR, bMaskDWord);
  732. BackupRegs[1] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord);
  733. BackupRegs[2] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord);
  734. #ifdef CONFIG_RTL8812A
  735. BackupRegs[3] = phy_query_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord);
  736. #endif
  737. PlatformEFIOWrite4Byte(pAdapter, REG_RCR, 0x1);
  738. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0, 0);
  739. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+1, 0);
  740. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+2, 0);
  741. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+3, 0);
  742. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+4, 0);
  743. PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+5, 0);
  744. #ifdef CONFIG_RTL8812A
  745. /* <20140410, Kordan> 0x11 = 0x4E, lower down LX_SPS0 voltage. (Asked by Chunchu)*/
  746. phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskByte1, 0x4E);
  747. #endif
  748. RTW_INFO(" %s , done\n", __func__);
  749. }
  750. }
  751. VOID efuse_PostUpdateAction(
  752. PADAPTER pAdapter,
  753. pu4Byte BackupRegs)
  754. {
  755. if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
  756. /* <20131115, Kordan> Turn on Rx and restore the registers. (Asked by Chunchu.)*/
  757. phy_set_mac_reg(pAdapter, REG_RCR, bMaskDWord, BackupRegs[0]);
  758. phy_set_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord, BackupRegs[1]);
  759. phy_set_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord, BackupRegs[2]);
  760. #ifdef CONFIG_RTL8812A
  761. phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord, BackupRegs[3]);
  762. #endif
  763. RTW_INFO(" %s , done\n", __func__);
  764. }
  765. }
  766. #ifdef RTW_HALMAC
  767. #include "../../hal/hal_halmac.h"
  768. void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
  769. {
  770. }
  771. void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
  772. {
  773. }
  774. u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size)
  775. {
  776. *size = 0;
  777. return _FAIL;
  778. }
  779. u16 efuse_GetMaxSize(PADAPTER adapter)
  780. {
  781. struct dvobj_priv *d;
  782. u32 size = 0;
  783. int err;
  784. d = adapter_to_dvobj(adapter);
  785. err = rtw_halmac_get_physical_efuse_size(d, &size);
  786. if (err)
  787. return 0;
  788. return size;
  789. }
  790. u16 efuse_GetavailableSize(PADAPTER adapter)
  791. {
  792. struct dvobj_priv *d;
  793. u32 size = 0;
  794. int err;
  795. d = adapter_to_dvobj(adapter);
  796. err = rtw_halmac_get_available_efuse_size(d, &size);
  797. if (err)
  798. return 0;
  799. return size;
  800. }
  801. u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *usesize)
  802. {
  803. u8 *efuse_map;
  804. *usesize = 0;
  805. efuse_map = rtw_malloc(EFUSE_BT_MAP_LEN);
  806. if (efuse_map == NULL) {
  807. RTW_DBG("%s: malloc FAIL\n", __FUNCTION__);
  808. return _FAIL;
  809. }
  810. /* for get bt phy efuse last use byte */
  811. hal_ReadEFuse_BT_logic_map(adapter, 0x00, EFUSE_BT_MAP_LEN, efuse_map);
  812. *usesize = fakeBTEfuseUsedBytes;
  813. if (efuse_map)
  814. rtw_mfree(efuse_map, EFUSE_BT_MAP_LEN);
  815. return _SUCCESS;
  816. }
  817. u16 efuse_bt_GetMaxSize(PADAPTER adapter)
  818. {
  819. return EFUSE_BT_REAL_CONTENT_LEN;
  820. }
  821. void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test)
  822. {
  823. struct dvobj_priv *d;
  824. u32 v32 = 0;
  825. d = adapter_to_dvobj(adapter);
  826. if (adapter->hal_func.EFUSEGetEfuseDefinition) {
  827. adapter->hal_func.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test);
  828. return;
  829. }
  830. if (EFUSE_WIFI == efusetype) {
  831. switch (type) {
  832. case TYPE_EFUSE_MAP_LEN:
  833. rtw_halmac_get_logical_efuse_size(d, &v32);
  834. *(u16 *)out = (u16)v32;
  835. return;
  836. case TYPE_EFUSE_REAL_CONTENT_LEN:
  837. rtw_halmac_get_physical_efuse_size(d, &v32);
  838. *(u16 *)out = (u16)v32;
  839. return;
  840. }
  841. } else if (EFUSE_BT == efusetype) {
  842. switch (type) {
  843. case TYPE_EFUSE_MAP_LEN:
  844. *(u16 *)out = EFUSE_BT_MAP_LEN;
  845. return;
  846. case TYPE_EFUSE_REAL_CONTENT_LEN:
  847. *(u16 *)out = EFUSE_BT_REAL_CONTENT_LEN;
  848. return;
  849. }
  850. }
  851. }
  852. /*
  853. * read/write raw efuse data
  854. */
  855. u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
  856. {
  857. struct dvobj_priv *d;
  858. u8 *efuse = NULL;
  859. u32 size, i;
  860. int err;
  861. d = adapter_to_dvobj(adapter);
  862. err = rtw_halmac_get_physical_efuse_size(d, &size);
  863. if (err)
  864. size = EFUSE_MAX_SIZE;
  865. if ((addr + cnts) > size)
  866. return _FAIL;
  867. if (_TRUE == write) {
  868. err = rtw_halmac_write_physical_efuse(d, addr, cnts, data);
  869. if (err)
  870. return _FAIL;
  871. } else {
  872. if (cnts > 16)
  873. efuse = rtw_zmalloc(size);
  874. if (efuse) {
  875. err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
  876. if (err) {
  877. rtw_mfree(efuse, size);
  878. return _FAIL;
  879. }
  880. _rtw_memcpy(data, efuse + addr, cnts);
  881. rtw_mfree(efuse, size);
  882. } else {
  883. err = rtw_halmac_read_physical_efuse(d, addr, cnts, data);
  884. if (err)
  885. return _FAIL;
  886. }
  887. }
  888. return _SUCCESS;
  889. }
  890. static inline void dump_buf(u8 *buf, u32 len)
  891. {
  892. u32 i;
  893. RTW_INFO("-----------------Len %d----------------\n", len);
  894. for (i = 0; i < len; i++)
  895. printk("%2.2x-", *(buf + i));
  896. printk("\n");
  897. }
  898. /*
  899. * read/write raw efuse data
  900. */
  901. u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
  902. {
  903. struct dvobj_priv *d;
  904. u8 *efuse = NULL;
  905. u32 size, i;
  906. int err = _FAIL;
  907. d = adapter_to_dvobj(adapter);
  908. size = EFUSE_BT_REAL_CONTENT_LEN;
  909. if ((addr + cnts) > size)
  910. return _FAIL;
  911. if (_TRUE == write) {
  912. err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data);
  913. if (err == -1) {
  914. RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__);
  915. return _FAIL;
  916. }
  917. RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data);
  918. } else {
  919. efuse = rtw_zmalloc(size);
  920. if (efuse) {
  921. err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size);
  922. if (err == -1) {
  923. RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__);
  924. rtw_mfree(efuse, size);
  925. return _FAIL;
  926. }
  927. dump_buf(efuse + addr, cnts);
  928. _rtw_memcpy(data, efuse + addr, cnts);
  929. RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok! data 0x%x\n", __FUNCTION__, *data);
  930. rtw_mfree(efuse, size);
  931. }
  932. }
  933. return _SUCCESS;
  934. }
  935. u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  936. {
  937. struct dvobj_priv *d;
  938. u8 *efuse = NULL;
  939. u32 size, i;
  940. int err;
  941. u32 backupRegs[4] = {0};
  942. u8 status = _SUCCESS;
  943. efuse_PreUpdateAction(adapter, backupRegs);
  944. d = adapter_to_dvobj(adapter);
  945. err = rtw_halmac_get_logical_efuse_size(d, &size);
  946. if (err) {
  947. status = _FAIL;
  948. goto exit;
  949. }
  950. /* size error handle */
  951. if ((addr + cnts) > size) {
  952. if (addr < size)
  953. cnts = size - addr;
  954. else {
  955. status = _FAIL;
  956. goto exit;
  957. }
  958. }
  959. if (cnts > 16)
  960. efuse = rtw_zmalloc(size);
  961. if (efuse) {
  962. err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
  963. if (err) {
  964. rtw_mfree(efuse, size);
  965. status = _FAIL;
  966. goto exit;
  967. }
  968. _rtw_memcpy(data, efuse + addr, cnts);
  969. rtw_mfree(efuse, size);
  970. } else {
  971. err = rtw_halmac_read_logical_efuse(d, addr, cnts, data);
  972. if (err) {
  973. status = _FAIL;
  974. goto exit;
  975. }
  976. }
  977. status = _SUCCESS;
  978. exit:
  979. efuse_PostUpdateAction(adapter, backupRegs);
  980. return status;
  981. }
  982. u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  983. {
  984. struct dvobj_priv *d;
  985. u8 *efuse = NULL;
  986. u32 size, i;
  987. int err;
  988. u8 mask_buf[64] = "";
  989. u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter);
  990. u32 backupRegs[4] = {0};
  991. u8 status = _SUCCESS;;
  992. efuse_PreUpdateAction(adapter, backupRegs);
  993. d = adapter_to_dvobj(adapter);
  994. err = rtw_halmac_get_logical_efuse_size(d, &size);
  995. if (err) {
  996. status = _FAIL;
  997. goto exit;
  998. }
  999. if ((addr + cnts) > size) {
  1000. status = _FAIL;
  1001. goto exit;
  1002. }
  1003. efuse = rtw_zmalloc(size);
  1004. if (!efuse) {
  1005. status = _FAIL;
  1006. goto exit;
  1007. }
  1008. err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
  1009. if (err) {
  1010. rtw_mfree(efuse, size);
  1011. status = _FAIL;
  1012. goto exit;
  1013. }
  1014. _rtw_memcpy(efuse + addr, data, cnts);
  1015. if (adapter->registrypriv.boffefusemask == 0) {
  1016. RTW_INFO("Use mask Array Len: %d\n", mask_len);
  1017. if (mask_len != 0) {
  1018. if (adapter->registrypriv.bFileMaskEfuse == _TRUE)
  1019. _rtw_memcpy(mask_buf, maskfileBuffer, mask_len);
  1020. else
  1021. rtw_efuse_mask_array(adapter, mask_buf);
  1022. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len);
  1023. } else
  1024. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0);
  1025. } else {
  1026. _rtw_memset(mask_buf, 0xFF, sizeof(mask_buf));
  1027. RTW_INFO("Efuse mask off\n");
  1028. err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16);
  1029. }
  1030. if (err) {
  1031. rtw_mfree(efuse, size);
  1032. status = _FAIL;
  1033. goto exit;
  1034. }
  1035. rtw_mfree(efuse, size);
  1036. status = _SUCCESS;
  1037. exit :
  1038. efuse_PostUpdateAction(adapter, backupRegs);
  1039. return status;
  1040. }
  1041. int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test)
  1042. {
  1043. return _FALSE;
  1044. }
  1045. int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test)
  1046. {
  1047. return _FALSE;
  1048. }
  1049. u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  1050. {
  1051. hal_ReadEFuse_BT_logic_map(adapter,addr, cnts, data);
  1052. return _SUCCESS;
  1053. }
  1054. u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
  1055. {
  1056. #define RT_ASSERT_RET(expr) \
  1057. if (!(expr)) { \
  1058. printk("Assertion failed! %s at ......\n", #expr); \
  1059. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  1060. return _FAIL; \
  1061. }
  1062. u8 offset, word_en;
  1063. u8 *map;
  1064. u8 newdata[PGPKT_DATA_SIZE];
  1065. s32 i = 0, j = 0, idx;
  1066. u8 ret = _SUCCESS;
  1067. u16 mapLen = 1024;
  1068. if ((addr + cnts) > mapLen)
  1069. return _FAIL;
  1070. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  1071. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  1072. map = rtw_zmalloc(mapLen);
  1073. if (map == NULL)
  1074. return _FAIL;
  1075. ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map);
  1076. if (ret == _FAIL)
  1077. goto exit;
  1078. RTW_INFO("OFFSET\tVALUE(hex)\n");
  1079. for (i = 0; i < mapLen; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
  1080. RTW_INFO("0x%03x\t", i);
  1081. for (j = 0; j < 8; j++)
  1082. RTW_INFO("%02X ", map[i + j]);
  1083. RTW_INFO("\t");
  1084. for (; j < 16; j++)
  1085. RTW_INFO("%02X ", map[i + j]);
  1086. RTW_INFO("\n");
  1087. }
  1088. RTW_INFO("\n");
  1089. idx = 0;
  1090. offset = (addr >> 3);
  1091. while (idx < cnts) {
  1092. word_en = 0xF;
  1093. j = (addr + idx) & 0x7;
  1094. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  1095. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  1096. if (data[idx] != map[addr + idx]) {
  1097. word_en &= ~BIT(i >> 1);
  1098. newdata[i] = data[idx];
  1099. }
  1100. }
  1101. if (word_en != 0xF) {
  1102. ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE);
  1103. RTW_INFO("offset=%x\n", offset);
  1104. RTW_INFO("word_en=%x\n", word_en);
  1105. RTW_INFO("%s: data=", __FUNCTION__);
  1106. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  1107. RTW_INFO("0x%02X ", newdata[i]);
  1108. RTW_INFO("\n");
  1109. if (ret == _FAIL)
  1110. break;
  1111. }
  1112. offset++;
  1113. }
  1114. exit:
  1115. rtw_mfree(map, mapLen);
  1116. return _SUCCESS;
  1117. }
  1118. VOID hal_ReadEFuse_BT_logic_map(
  1119. PADAPTER padapter,
  1120. u16 _offset,
  1121. u16 _size_byte,
  1122. u8 *pbuf
  1123. )
  1124. {
  1125. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  1126. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1127. u8 *efuseTbl, *phyefuse;
  1128. u8 bank;
  1129. u16 eFuse_Addr = 0;
  1130. u8 efuseHeader, efuseExtHdr, efuseData;
  1131. u8 offset, wden;
  1132. u16 i, total, used;
  1133. u8 efuse_usage;
  1134. /* */
  1135. /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
  1136. /* */
  1137. if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
  1138. RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
  1139. return;
  1140. }
  1141. efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
  1142. phyefuse = rtw_malloc(EFUSE_BT_REAL_CONTENT_LEN);
  1143. if (efuseTbl == NULL || phyefuse == NULL) {
  1144. RTW_INFO("%s: efuseTbl or phyefuse malloc fail!\n", __FUNCTION__);
  1145. goto exit;
  1146. }
  1147. /* 0xff will be efuse default value instead of 0x00. */
  1148. _rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
  1149. _rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_CONTENT_LEN);
  1150. if (rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_CONTENT_LEN, phyefuse))
  1151. dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
  1152. total = BANK_NUM;
  1153. for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */
  1154. eFuse_Addr = 0;
  1155. while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
  1156. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
  1157. efuseHeader = phyefuse[eFuse_Addr++];
  1158. if (efuseHeader == 0xFF)
  1159. break;
  1160. RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
  1161. /* Check PG header for section num. */
  1162. if (EXT_HEADER(efuseHeader)) { /* extended header */
  1163. offset = GET_HDR_OFFSET_2_0(efuseHeader);
  1164. RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
  1165. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
  1166. efuseExtHdr = phyefuse[eFuse_Addr++];
  1167. RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
  1168. if (ALL_WORDS_DISABLED(efuseExtHdr))
  1169. continue;
  1170. offset |= ((efuseExtHdr & 0xF0) >> 1);
  1171. wden = (efuseExtHdr & 0x0F);
  1172. } else {
  1173. offset = ((efuseHeader >> 4) & 0x0f);
  1174. wden = (efuseHeader & 0x0f);
  1175. }
  1176. if (offset < EFUSE_BT_MAX_SECTION) {
  1177. u16 addr;
  1178. /* Get word enable value from PG header */
  1179. RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
  1180. addr = offset * PGPKT_DATA_SIZE;
  1181. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  1182. /* Check word enable condition in the section */
  1183. if (!(wden & (0x01 << i))) {
  1184. efuseData = 0;
  1185. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
  1186. efuseData = phyefuse[eFuse_Addr++];
  1187. RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
  1188. efuseTbl[addr] = efuseData;
  1189. efuseData = 0;
  1190. /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
  1191. efuseData = phyefuse[eFuse_Addr++];
  1192. RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
  1193. efuseTbl[addr + 1] = efuseData;
  1194. }
  1195. addr += 2;
  1196. }
  1197. } else {
  1198. RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
  1199. eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
  1200. }
  1201. }
  1202. if ((eFuse_Addr - 1) < total) {
  1203. RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
  1204. break;
  1205. }
  1206. }
  1207. /* switch bank back to bank 0 for later BT and wifi use. */
  1208. //hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
  1209. /* Copy from Efuse map to output pointer memory!!! */
  1210. for (i = 0; i < _size_byte; i++)
  1211. pbuf[i] = efuseTbl[_offset + i];
  1212. /* Calculate Efuse utilization */
  1213. total = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  1214. used = eFuse_Addr - 1;
  1215. if (total)
  1216. efuse_usage = (u8)((used * 100) / total);
  1217. else
  1218. efuse_usage = 100;
  1219. fakeBTEfuseUsedBytes = used;
  1220. RTW_INFO("%s: BTEfuseUsed last Bytes = %#x\n", __FUNCTION__, fakeBTEfuseUsedBytes);
  1221. exit:
  1222. if (efuseTbl)
  1223. rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
  1224. if (phyefuse)
  1225. rtw_mfree(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
  1226. }
  1227. static u8 hal_EfusePartialWriteCheck(
  1228. PADAPTER padapter,
  1229. u8 efuseType,
  1230. u16 *pAddr,
  1231. PPGPKT_STRUCT pTargetPkt,
  1232. u8 bPseudoTest)
  1233. {
  1234. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  1235. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1236. u8 bRet = _FALSE;
  1237. u16 startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  1238. u8 efuse_data = 0;
  1239. startAddr = (u16)fakeBTEfuseUsedBytes;
  1240. startAddr %= efuse_max;
  1241. RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
  1242. while (1) {
  1243. if (startAddr >= efuse_max_available_len) {
  1244. bRet = _FALSE;
  1245. RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
  1246. __FUNCTION__, startAddr, efuse_max_available_len);
  1247. break;
  1248. }
  1249. if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) {
  1250. bRet = _FALSE;
  1251. RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
  1252. __FUNCTION__, startAddr, efuse_data);
  1253. break;
  1254. } else {
  1255. /* not used header, 0xff */
  1256. *pAddr = startAddr;
  1257. /* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
  1258. bRet = _TRUE;
  1259. break;
  1260. }
  1261. }
  1262. return bRet;
  1263. }
  1264. static u8 hal_EfusePgPacketWrite2ByteHeader(
  1265. PADAPTER padapter,
  1266. u8 efuseType,
  1267. u16 *pAddr,
  1268. PPGPKT_STRUCT pTargetPkt,
  1269. u8 bPseudoTest)
  1270. {
  1271. u16 efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN;
  1272. u8 pg_header = 0, tmp_header = 0;
  1273. u8 repeatcnt = 0;
  1274. /* RTW_INFO("%s\n", __FUNCTION__); */
  1275. efuse_addr = *pAddr;
  1276. if (efuse_addr >= efuse_max_available_len) {
  1277. RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
  1278. return _FALSE;
  1279. }
  1280. pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
  1281. /* RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */
  1282. do {
  1283. rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
  1284. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
  1285. if (tmp_header != 0xFF)
  1286. break;
  1287. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  1288. RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
  1289. return _FALSE;
  1290. }
  1291. } while (1);
  1292. if (tmp_header != pg_header) {
  1293. RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  1294. return _FALSE;
  1295. }
  1296. /* to write ext_header */
  1297. efuse_addr++;
  1298. pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
  1299. do {
  1300. rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
  1301. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
  1302. if (tmp_header != 0xFF)
  1303. break;
  1304. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  1305. RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
  1306. return _FALSE;
  1307. }
  1308. } while (1);
  1309. if (tmp_header != pg_header) { /* offset PG fail */
  1310. RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  1311. return _FALSE;
  1312. }
  1313. *pAddr = efuse_addr;
  1314. return _TRUE;
  1315. }
  1316. static u8 hal_EfusePgPacketWrite1ByteHeader(
  1317. PADAPTER pAdapter,
  1318. u8 efuseType,
  1319. u16 *pAddr,
  1320. PPGPKT_STRUCT pTargetPkt,
  1321. u8 bPseudoTest)
  1322. {
  1323. u8 bRet = _FALSE;
  1324. u8 pg_header = 0, tmp_header = 0;
  1325. u16 efuse_addr = *pAddr;
  1326. u8 repeatcnt = 0;
  1327. /* RTW_INFO("%s\n", __FUNCTION__); */
  1328. pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
  1329. do {
  1330. rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header);
  1331. rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header);
  1332. if (tmp_header != 0xFF)
  1333. break;
  1334. if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
  1335. RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
  1336. return _FALSE;
  1337. }
  1338. } while (1);
  1339. if (tmp_header != pg_header) {
  1340. RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
  1341. return _FALSE;
  1342. }
  1343. *pAddr = efuse_addr;
  1344. return _TRUE;
  1345. }
  1346. static u8 hal_EfusePgPacketWriteHeader(
  1347. PADAPTER padapter,
  1348. u8 efuseType,
  1349. u16 *pAddr,
  1350. PPGPKT_STRUCT pTargetPkt,
  1351. u8 bPseudoTest)
  1352. {
  1353. u8 bRet = _FALSE;
  1354. if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
  1355. bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
  1356. else
  1357. bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
  1358. return bRet;
  1359. }
  1360. static u8
  1361. Hal_EfuseWordEnableDataWrite(
  1362. PADAPTER padapter,
  1363. u16 efuse_addr,
  1364. u8 word_en,
  1365. u8 *data,
  1366. u8 bPseudoTest)
  1367. {
  1368. u16 tmpaddr = 0;
  1369. u16 start_addr = efuse_addr;
  1370. u8 badworden = 0x0F;
  1371. u8 tmpdata[PGPKT_DATA_SIZE];
  1372. /* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */
  1373. _rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
  1374. if (!(word_en & BIT(0))) {
  1375. tmpaddr = start_addr;
  1376. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]);
  1377. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]);
  1378. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]);
  1379. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]);
  1380. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  1381. badworden &= (~BIT(0));
  1382. }
  1383. if (!(word_en & BIT(1))) {
  1384. tmpaddr = start_addr;
  1385. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]);
  1386. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]);
  1387. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]);
  1388. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]);
  1389. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  1390. badworden &= (~BIT(1));
  1391. }
  1392. if (!(word_en & BIT(2))) {
  1393. tmpaddr = start_addr;
  1394. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]);
  1395. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]);
  1396. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]);
  1397. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]);
  1398. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  1399. badworden &= (~BIT(2));
  1400. }
  1401. if (!(word_en & BIT(3))) {
  1402. tmpaddr = start_addr;
  1403. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]);
  1404. rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]);
  1405. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]);
  1406. rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]);
  1407. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  1408. badworden &= (~BIT(3));
  1409. }
  1410. return badworden;
  1411. }
  1412. static void
  1413. hal_EfuseConstructPGPkt(
  1414. u8 offset,
  1415. u8 word_en,
  1416. u8 *pData,
  1417. PPGPKT_STRUCT pTargetPkt)
  1418. {
  1419. _rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
  1420. pTargetPkt->offset = offset;
  1421. pTargetPkt->word_en = word_en;
  1422. efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
  1423. pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
  1424. }
  1425. static u8
  1426. hal_EfusePgPacketWriteData(
  1427. PADAPTER pAdapter,
  1428. u8 efuseType,
  1429. u16 *pAddr,
  1430. PPGPKT_STRUCT pTargetPkt,
  1431. u8 bPseudoTest)
  1432. {
  1433. u16 efuse_addr;
  1434. u8 badworden;
  1435. efuse_addr = *pAddr;
  1436. badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
  1437. if (badworden != 0x0F) {
  1438. RTW_INFO("%s: Fail!!\n", __FUNCTION__);
  1439. return _FALSE;
  1440. } else
  1441. RTW_INFO("%s: OK!!\n", __FUNCTION__);
  1442. return _TRUE;
  1443. }
  1444. u8 efuse_OneByteRead(struct _ADAPTER *a, u16 addr, u8 *data, u8 bPseudoTest)
  1445. {
  1446. struct dvobj_priv *d;
  1447. int err;
  1448. u8 ret = _TRUE;
  1449. d = adapter_to_dvobj(a);
  1450. err = rtw_halmac_read_physical_efuse(d, addr, 1, data);
  1451. if (err) {
  1452. RTW_ERR("%s: addr=0x%x FAIL!!!\n", __FUNCTION__, addr);
  1453. ret = _FALSE;
  1454. }
  1455. return ret;
  1456. }
  1457. static u16
  1458. hal_EfuseGetCurrentSize_BT(
  1459. PADAPTER padapter,
  1460. u8 bPseudoTest)
  1461. {
  1462. #ifdef HAL_EFUSE_MEMORY
  1463. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
  1464. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  1465. #endif
  1466. u16 btusedbytes;
  1467. u16 efuse_addr;
  1468. u8 bank, startBank;
  1469. u8 hoffset = 0, hworden = 0;
  1470. u8 efuse_data, word_cnts = 0;
  1471. u16 retU2 = 0;
  1472. u8 bContinual = _TRUE;
  1473. btusedbytes = fakeBTEfuseUsedBytes;
  1474. efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
  1475. startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
  1476. RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
  1477. retU2 = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
  1478. for (bank = startBank; bank < 3; bank++) {
  1479. if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
  1480. RTW_ERR("%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
  1481. /* bank = EFUSE_MAX_BANK; */
  1482. break;
  1483. }
  1484. /* only when bank is switched we have to reset the efuse_addr. */
  1485. if (bank != startBank)
  1486. efuse_addr = 0;
  1487. while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
  1488. if (rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data) == _FALSE) {
  1489. RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
  1490. /* bank = EFUSE_MAX_BANK; */
  1491. break;
  1492. }
  1493. RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
  1494. if (efuse_data == 0xFF)
  1495. break;
  1496. if (EXT_HEADER(efuse_data)) {
  1497. hoffset = GET_HDR_OFFSET_2_0(efuse_data);
  1498. efuse_addr++;
  1499. rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data);
  1500. RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
  1501. if (ALL_WORDS_DISABLED(efuse_data)) {
  1502. efuse_addr++;
  1503. continue;
  1504. }
  1505. /* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
  1506. hoffset |= ((efuse_data & 0xF0) >> 1);
  1507. hworden = efuse_data & 0x0F;
  1508. } else {
  1509. hoffset = (efuse_data >> 4) & 0x0F;
  1510. hworden = efuse_data & 0x0F;
  1511. }
  1512. RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
  1513. FUNC_ADPT_ARG(padapter), hoffset, hworden);
  1514. word_cnts = Efuse_CalculateWordCnts(hworden);
  1515. /* read next header */
  1516. efuse_addr += (word_cnts * 2) + 1;
  1517. }
  1518. /* Check if we need to check next bank efuse */
  1519. if (efuse_addr < retU2)
  1520. break;/* don't need to check next bank. */
  1521. }
  1522. retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
  1523. fakeBTEfuseUsedBytes = retU2;
  1524. RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
  1525. return retU2;
  1526. }
  1527. static u8
  1528. hal_BT_EfusePgCheckAvailableAddr(
  1529. PADAPTER pAdapter,
  1530. u8 bPseudoTest)
  1531. {
  1532. u16 max_available = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
  1533. u16 current_size = 0;
  1534. RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available);
  1535. current_size = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
  1536. if (current_size >= max_available) {
  1537. RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
  1538. return _FALSE;
  1539. }
  1540. return _TRUE;
  1541. }
  1542. u8 EfusePgPacketWrite_BT(
  1543. PADAPTER pAdapter,
  1544. u8 offset,
  1545. u8 word_en,
  1546. u8 *pData,
  1547. u8 bPseudoTest)
  1548. {
  1549. PGPKT_STRUCT targetPkt;
  1550. u16 startAddr = 0;
  1551. u8 efuseType = EFUSE_BT;
  1552. if (!hal_BT_EfusePgCheckAvailableAddr(pAdapter, bPseudoTest))
  1553. return _FALSE;
  1554. hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
  1555. if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1556. return _FALSE;
  1557. if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1558. return _FALSE;
  1559. if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
  1560. return _FALSE;
  1561. return _TRUE;
  1562. }
  1563. #else /* !RTW_HALMAC */
  1564. /* ------------------------------------------------------------------------------ */
  1565. #define REG_EFUSE_CTRL 0x0030
  1566. #define EFUSE_CTRL REG_EFUSE_CTRL /* E-Fuse Control. */
  1567. /* ------------------------------------------------------------------------------ */
  1568. BOOLEAN
  1569. Efuse_Read1ByteFromFakeContent(
  1570. IN PADAPTER pAdapter,
  1571. IN u16 Offset,
  1572. IN OUT u8 *Value);
  1573. BOOLEAN
  1574. Efuse_Read1ByteFromFakeContent(
  1575. IN PADAPTER pAdapter,
  1576. IN u16 Offset,
  1577. IN OUT u8 *Value)
  1578. {
  1579. if (Offset >= EFUSE_MAX_HW_SIZE)
  1580. return _FALSE;
  1581. /* DbgPrint("Read fake content, offset = %d\n", Offset); */
  1582. if (fakeEfuseBank == 0)
  1583. *Value = fakeEfuseContent[Offset];
  1584. else
  1585. *Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset];
  1586. return _TRUE;
  1587. }
  1588. BOOLEAN
  1589. Efuse_Write1ByteToFakeContent(
  1590. IN PADAPTER pAdapter,
  1591. IN u16 Offset,
  1592. IN u8 Value);
  1593. BOOLEAN
  1594. Efuse_Write1ByteToFakeContent(
  1595. IN PADAPTER pAdapter,
  1596. IN u16 Offset,
  1597. IN u8 Value)
  1598. {
  1599. if (Offset >= EFUSE_MAX_HW_SIZE)
  1600. return _FALSE;
  1601. if (fakeEfuseBank == 0)
  1602. fakeEfuseContent[Offset] = Value;
  1603. else
  1604. fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value;
  1605. return _TRUE;
  1606. }
  1607. /*-----------------------------------------------------------------------------
  1608. * Function: Efuse_PowerSwitch
  1609. *
  1610. * Overview: When we want to enable write operation, we should change to
  1611. * pwr on state. When we stop write, we should switch to 500k mode
  1612. * and disable LDO 2.5V.
  1613. *
  1614. * Input: NONE
  1615. *
  1616. * Output: NONE
  1617. *
  1618. * Return: NONE
  1619. *
  1620. * Revised History:
  1621. * When Who Remark
  1622. * 11/17/2008 MHC Create Version 0.
  1623. *
  1624. *---------------------------------------------------------------------------*/
  1625. VOID
  1626. Efuse_PowerSwitch(
  1627. IN PADAPTER pAdapter,
  1628. IN u8 bWrite,
  1629. IN u8 PwrState)
  1630. {
  1631. pAdapter->hal_func.EfusePowerSwitch(pAdapter, bWrite, PwrState);
  1632. }
  1633. VOID
  1634. BTEfuse_PowerSwitch(
  1635. IN PADAPTER pAdapter,
  1636. IN u8 bWrite,
  1637. IN u8 PwrState)
  1638. {
  1639. if (pAdapter->hal_func.BTEfusePowerSwitch)
  1640. pAdapter->hal_func.BTEfusePowerSwitch(pAdapter, bWrite, PwrState);
  1641. }
  1642. /*-----------------------------------------------------------------------------
  1643. * Function: efuse_GetCurrentSize
  1644. *
  1645. * Overview: Get current efuse size!!!
  1646. *
  1647. * Input: NONE
  1648. *
  1649. * Output: NONE
  1650. *
  1651. * Return: NONE
  1652. *
  1653. * Revised History:
  1654. * When Who Remark
  1655. * 11/16/2008 MHC Create Version 0.
  1656. *
  1657. *---------------------------------------------------------------------------*/
  1658. u16
  1659. Efuse_GetCurrentSize(
  1660. IN PADAPTER pAdapter,
  1661. IN u8 efuseType,
  1662. IN BOOLEAN bPseudoTest)
  1663. {
  1664. u16 ret = 0;
  1665. ret = pAdapter->hal_func.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
  1666. return ret;
  1667. }
  1668. /*
  1669. * Description:
  1670. * Execute E-Fuse read byte operation.
  1671. * Refered from SD1 Richard.
  1672. *
  1673. * Assumption:
  1674. * 1. Boot from E-Fuse and successfully auto-load.
  1675. * 2. PASSIVE_LEVEL (USB interface)
  1676. *
  1677. * Created by Roger, 2008.10.21.
  1678. * */
  1679. VOID
  1680. ReadEFuseByte(
  1681. PADAPTER Adapter,
  1682. u16 _offset,
  1683. u8 *pbuf,
  1684. IN BOOLEAN bPseudoTest)
  1685. {
  1686. u32 value32;
  1687. u8 readbyte;
  1688. u16 retry;
  1689. /* systime start=rtw_get_current_time(); */
  1690. if (bPseudoTest) {
  1691. Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf);
  1692. return;
  1693. }
  1694. if (IS_HARDWARE_TYPE_8723B(Adapter)) {
  1695. /* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */
  1696. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1697. phy_set_mac_reg(Adapter, EFUSE_TEST, BIT11, 0);
  1698. }
  1699. /* Write Address */
  1700. rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff));
  1701. readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2);
  1702. rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  1703. /* Write bit 32 0 */
  1704. readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3);
  1705. rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
  1706. /* Check bit 32 read-ready */
  1707. retry = 0;
  1708. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1709. /* while(!(((value32 >> 24) & 0xff) & 0x80) && (retry<10)) */
  1710. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  1711. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1712. retry++;
  1713. }
  1714. /* 20100205 Joseph: Add delay suggested by SD1 Victor. */
  1715. /* This fix the problem that Efuse read error in high temperature condition. */
  1716. /* Designer says that there shall be some delay after ready bit is set, or the */
  1717. /* result will always stay on last data we read. */
  1718. rtw_udelay_os(50);
  1719. value32 = rtw_read32(Adapter, EFUSE_CTRL);
  1720. *pbuf = (u8)(value32 & 0xff);
  1721. /* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */
  1722. }
  1723. /*
  1724. * Description:
  1725. * 1. Execute E-Fuse read byte operation according as map offset and
  1726. * save to E-Fuse table.
  1727. * 2. Refered from SD1 Richard.
  1728. *
  1729. * Assumption:
  1730. * 1. Boot from E-Fuse and successfully auto-load.
  1731. * 2. PASSIVE_LEVEL (USB interface)
  1732. *
  1733. * Created by Roger, 2008.10.21.
  1734. *
  1735. * 2008/12/12 MH 1. Reorganize code flow and reserve bytes. and add description.
  1736. * 2. Add efuse utilization collect.
  1737. * 2008/12/22 MH Read Efuse must check if we write section 1 data again!!! Sec1
  1738. * write addr must be after sec5.
  1739. * */
  1740. VOID
  1741. efuse_ReadEFuse(
  1742. PADAPTER Adapter,
  1743. u8 efuseType,
  1744. u16 _offset,
  1745. u16 _size_byte,
  1746. u8 *pbuf,
  1747. IN BOOLEAN bPseudoTest
  1748. );
  1749. VOID
  1750. efuse_ReadEFuse(
  1751. PADAPTER Adapter,
  1752. u8 efuseType,
  1753. u16 _offset,
  1754. u16 _size_byte,
  1755. u8 *pbuf,
  1756. IN BOOLEAN bPseudoTest
  1757. )
  1758. {
  1759. Adapter->hal_func.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
  1760. }
  1761. VOID
  1762. EFUSE_GetEfuseDefinition(
  1763. IN PADAPTER pAdapter,
  1764. IN u8 efuseType,
  1765. IN u8 type,
  1766. OUT void *pOut,
  1767. IN BOOLEAN bPseudoTest
  1768. )
  1769. {
  1770. pAdapter->hal_func.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest);
  1771. }
  1772. /* 11/16/2008 MH Read one byte from real Efuse. */
  1773. u8
  1774. efuse_OneByteRead(
  1775. IN PADAPTER pAdapter,
  1776. IN u16 addr,
  1777. IN u8 *data,
  1778. IN BOOLEAN bPseudoTest)
  1779. {
  1780. u32 tmpidx = 0;
  1781. u8 bResult;
  1782. u8 readbyte;
  1783. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  1784. /* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */
  1785. /* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
  1786. if (bPseudoTest) {
  1787. bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data);
  1788. return bResult;
  1789. }
  1790. #ifdef CONFIG_RTL8710B
  1791. /* <20171208, Peter>, Dont do the following write16(0x34) */
  1792. if (IS_HARDWARE_TYPE_8710B(pAdapter)) {
  1793. bResult = pAdapter->hal_func.efuse_indirect_read4(pAdapter, addr, data);
  1794. return bResult;
  1795. }
  1796. #endif
  1797. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1798. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1799. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1800. ) {
  1801. /* <20130121, Kordan> For SMIC EFUSE specificatoin. */
  1802. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1803. /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */
  1804. rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
  1805. }
  1806. /* -----------------e-fuse reg ctrl --------------------------------- */
  1807. /* address */
  1808. rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
  1809. rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
  1810. (rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
  1811. /* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */
  1812. /* Write bit 32 0 */
  1813. readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
  1814. rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
  1815. while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
  1816. rtw_mdelay_os(1);
  1817. tmpidx++;
  1818. }
  1819. if (tmpidx < 100) {
  1820. *data = rtw_read8(pAdapter, EFUSE_CTRL);
  1821. bResult = _TRUE;
  1822. } else {
  1823. *data = 0xff;
  1824. bResult = _FALSE;
  1825. RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
  1826. RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
  1827. }
  1828. return bResult;
  1829. }
  1830. /* 11/16/2008 MH Write one byte to reald Efuse. */
  1831. u8
  1832. efuse_OneByteWrite(
  1833. IN PADAPTER pAdapter,
  1834. IN u16 addr,
  1835. IN u8 data,
  1836. IN BOOLEAN bPseudoTest)
  1837. {
  1838. u8 tmpidx = 0;
  1839. u8 bResult = _FALSE;
  1840. u32 efuseValue = 0;
  1841. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
  1842. /* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */
  1843. /* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
  1844. if (bPseudoTest) {
  1845. bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data);
  1846. return bResult;
  1847. }
  1848. Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE);
  1849. /* -----------------e-fuse reg ctrl --------------------------------- */
  1850. /* address */
  1851. efuseValue = rtw_read32(pAdapter, EFUSE_CTRL);
  1852. efuseValue |= (BIT21 | BIT31);
  1853. efuseValue &= ~(0x3FFFF);
  1854. efuseValue |= ((addr << 8 | data) & 0x3FFFF);
  1855. /* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */
  1856. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1857. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1858. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1859. ) {
  1860. /* <20130121, Kordan> For SMIC EFUSE specificatoin. */
  1861. /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
  1862. /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 1); */
  1863. rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11));
  1864. rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data)));
  1865. } else
  1866. rtw_write32(pAdapter, EFUSE_CTRL, efuseValue);
  1867. rtw_mdelay_os(1);
  1868. while ((0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) {
  1869. rtw_mdelay_os(1);
  1870. tmpidx++;
  1871. }
  1872. if (tmpidx < 100)
  1873. bResult = _TRUE;
  1874. else {
  1875. bResult = _FALSE;
  1876. RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n",
  1877. __FUNCTION__, addr, efuseValue, bResult);
  1878. RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
  1879. }
  1880. /* disable Efuse program enable */
  1881. if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
  1882. (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
  1883. (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
  1884. )
  1885. phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT(11), 0);
  1886. Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE);
  1887. return bResult;
  1888. }
  1889. int
  1890. Efuse_PgPacketRead(IN PADAPTER pAdapter,
  1891. IN u8 offset,
  1892. IN u8 *data,
  1893. IN BOOLEAN bPseudoTest)
  1894. {
  1895. int ret = 0;
  1896. ret = pAdapter->hal_func.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest);
  1897. return ret;
  1898. }
  1899. int
  1900. Efuse_PgPacketWrite(IN PADAPTER pAdapter,
  1901. IN u8 offset,
  1902. IN u8 word_en,
  1903. IN u8 *data,
  1904. IN BOOLEAN bPseudoTest)
  1905. {
  1906. int ret;
  1907. ret = pAdapter->hal_func.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
  1908. return ret;
  1909. }
  1910. int
  1911. Efuse_PgPacketWrite_BT(IN PADAPTER pAdapter,
  1912. IN u8 offset,
  1913. IN u8 word_en,
  1914. IN u8 *data,
  1915. IN BOOLEAN bPseudoTest)
  1916. {
  1917. int ret;
  1918. ret = pAdapter->hal_func.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest);
  1919. return ret;
  1920. }
  1921. u8
  1922. Efuse_WordEnableDataWrite(IN PADAPTER pAdapter,
  1923. IN u16 efuse_addr,
  1924. IN u8 word_en,
  1925. IN u8 *data,
  1926. IN BOOLEAN bPseudoTest)
  1927. {
  1928. u8 ret = 0;
  1929. ret = pAdapter->hal_func.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
  1930. return ret;
  1931. }
  1932. static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value)
  1933. {
  1934. return efuse_OneByteRead(padapter, address, value, _FALSE);
  1935. }
  1936. static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value)
  1937. {
  1938. return efuse_OneByteWrite(padapter, address, *value, _FALSE);
  1939. }
  1940. /*
  1941. * read/wirte raw efuse data
  1942. */
  1943. u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data)
  1944. {
  1945. int i = 0;
  1946. u16 real_content_len = 0, max_available_size = 0;
  1947. u8 res = _FAIL ;
  1948. u8(*rw8)(PADAPTER, u16, u8 *);
  1949. u32 backupRegs[4] = {0};
  1950. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&real_content_len, _FALSE);
  1951. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_available_size, _FALSE);
  1952. if (start_addr > real_content_len)
  1953. return _FAIL;
  1954. if (_TRUE == bWrite) {
  1955. if ((start_addr + cnts) > max_available_size)
  1956. return _FAIL;
  1957. rw8 = &efuse_write8;
  1958. } else
  1959. rw8 = &efuse_read8;
  1960. efuse_PreUpdateAction(padapter, backupRegs);
  1961. Efuse_PowerSwitch(padapter, bWrite, _TRUE);
  1962. /* e-fuse one byte read / write */
  1963. for (i = 0; i < cnts; i++) {
  1964. if (start_addr >= real_content_len) {
  1965. res = _FAIL;
  1966. break;
  1967. }
  1968. res = rw8(padapter, start_addr++, data++);
  1969. if (_FAIL == res)
  1970. break;
  1971. }
  1972. Efuse_PowerSwitch(padapter, bWrite, _FALSE);
  1973. efuse_PostUpdateAction(padapter, backupRegs);
  1974. return res;
  1975. }
  1976. /* ------------------------------------------------------------------------------ */
  1977. u16 efuse_GetMaxSize(PADAPTER padapter)
  1978. {
  1979. u16 max_size;
  1980. max_size = 0;
  1981. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
  1982. return max_size;
  1983. }
  1984. /* ------------------------------------------------------------------------------ */
  1985. u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size)
  1986. {
  1987. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  1988. *size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
  1989. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  1990. return _SUCCESS;
  1991. }
  1992. /* ------------------------------------------------------------------------------ */
  1993. u16 efuse_bt_GetMaxSize(PADAPTER padapter)
  1994. {
  1995. u16 max_size;
  1996. max_size = 0;
  1997. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
  1998. return max_size;
  1999. }
  2000. u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size)
  2001. {
  2002. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  2003. *size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE);
  2004. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  2005. return _SUCCESS;
  2006. }
  2007. u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  2008. {
  2009. u16 mapLen = 0;
  2010. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  2011. if ((addr + cnts) > mapLen)
  2012. return _FAIL;
  2013. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  2014. efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE);
  2015. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  2016. return _SUCCESS;
  2017. }
  2018. u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  2019. {
  2020. u16 mapLen = 0;
  2021. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  2022. if ((addr + cnts) > mapLen)
  2023. return _FAIL;
  2024. Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
  2025. efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE);
  2026. Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
  2027. return _SUCCESS;
  2028. }
  2029. /* ------------------------------------------------------------------------------ */
  2030. u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  2031. {
  2032. #define RT_ASSERT_RET(expr) \
  2033. if (!(expr)) { \
  2034. printk("Assertion failed! %s at ......\n", #expr); \
  2035. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  2036. return _FAIL; \
  2037. }
  2038. u8 *efuse = NULL;
  2039. u8 offset, word_en;
  2040. u8 *map = NULL;
  2041. u8 newdata[PGPKT_DATA_SIZE];
  2042. s32 i, j, idx, chk_total_byte;
  2043. u8 ret = _SUCCESS;
  2044. u16 mapLen = 0, startAddr = 0, efuse_max_available_len = 0;
  2045. u32 backupRegs[4] = {0};
  2046. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
  2047. PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
  2048. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  2049. EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, _FALSE);
  2050. if ((addr + cnts) > mapLen)
  2051. return _FAIL;
  2052. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  2053. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  2054. efuse = rtw_zmalloc(mapLen);
  2055. if (!efuse)
  2056. return _FAIL;
  2057. map = rtw_zmalloc(mapLen);
  2058. if (map == NULL) {
  2059. rtw_mfree(efuse, mapLen);
  2060. return _FAIL;
  2061. }
  2062. _rtw_memset(map, 0xFF, mapLen);
  2063. ret = rtw_efuse_map_read(padapter, 0, mapLen, map);
  2064. if (ret == _FAIL)
  2065. goto exit;
  2066. _rtw_memcpy(efuse , map, mapLen);
  2067. _rtw_memcpy(efuse + addr, data, cnts);
  2068. if (padapter->registrypriv.boffefusemask == 0) {
  2069. for (i = 0; i < cnts; i++) {
  2070. if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
  2071. if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask. */
  2072. efuse[addr + i] = map[addr + i];
  2073. } else {
  2074. if (efuse_IsMasked(padapter, addr + i))
  2075. efuse[addr + i] = map[addr + i];
  2076. }
  2077. RTW_INFO("%s ,Write data[%d] = %x, map[%d]= %x\n", __func__, addr + i, efuse[ addr + i], addr + i, map[addr + i]);
  2078. }
  2079. }
  2080. /*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/
  2081. chk_total_byte = 0;
  2082. idx = 0;
  2083. offset = (addr >> 3);
  2084. while (idx < cnts) {
  2085. word_en = 0xF;
  2086. j = (addr + idx) & 0x7;
  2087. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  2088. if (efuse[addr + idx] != map[addr + idx])
  2089. word_en &= ~BIT(i >> 1);
  2090. }
  2091. if (word_en != 0xF) {
  2092. chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
  2093. if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
  2094. chk_total_byte += 2;
  2095. else
  2096. chk_total_byte += 1;
  2097. }
  2098. offset++;
  2099. }
  2100. RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
  2101. rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
  2102. if (startAddr == 0) {
  2103. startAddr = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
  2104. RTW_INFO("%s: Efuse_GetCurrentSize startAddr=%#X\n", __func__, startAddr);
  2105. }
  2106. RTW_DBG("%s: startAddr=%#X\n", __func__, startAddr);
  2107. if ((startAddr + chk_total_byte) >= efuse_max_available_len) {
  2108. RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse_max_available_len(0x%X)\n",
  2109. __func__, startAddr, chk_total_byte, efuse_max_available_len);
  2110. ret = _FAIL;
  2111. goto exit;
  2112. }
  2113. efuse_PreUpdateAction(padapter, backupRegs);
  2114. idx = 0;
  2115. offset = (addr >> 3);
  2116. while (idx < cnts) {
  2117. word_en = 0xF;
  2118. j = (addr + idx) & 0x7;
  2119. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  2120. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  2121. if (efuse[addr + idx] != map[addr + idx]) {
  2122. word_en &= ~BIT(i >> 1);
  2123. newdata[i] = efuse[addr + idx];
  2124. #ifdef CONFIG_RTL8723B
  2125. if (addr + idx == 0x8) {
  2126. if (IS_C_CUT(pHalData->version_id) || IS_B_CUT(pHalData->version_id)) {
  2127. if (pHalData->adjuseVoltageVal == 6) {
  2128. newdata[i] = map[addr + idx];
  2129. RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]);
  2130. }
  2131. }
  2132. }
  2133. #endif
  2134. }
  2135. }
  2136. if (word_en != 0xF) {
  2137. ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE);
  2138. RTW_INFO("offset=%x\n", offset);
  2139. RTW_INFO("word_en=%x\n", word_en);
  2140. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  2141. RTW_INFO("data=%x \t", newdata[i]);
  2142. if (ret == _FAIL)
  2143. break;
  2144. }
  2145. offset++;
  2146. }
  2147. /*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/
  2148. efuse_PostUpdateAction(padapter, backupRegs);
  2149. exit:
  2150. rtw_mfree(map, mapLen);
  2151. rtw_mfree(efuse, mapLen);
  2152. return ret;
  2153. }
  2154. u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
  2155. {
  2156. #define RT_ASSERT_RET(expr) \
  2157. if (!(expr)) { \
  2158. printk("Assertion failed! %s at ......\n", #expr); \
  2159. printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
  2160. return _FAIL; \
  2161. }
  2162. u8 offset, word_en;
  2163. u8 *map;
  2164. u8 newdata[PGPKT_DATA_SIZE];
  2165. s32 i = 0, j = 0, idx;
  2166. u8 ret = _SUCCESS;
  2167. u16 mapLen = 0;
  2168. EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
  2169. if ((addr + cnts) > mapLen)
  2170. return _FAIL;
  2171. RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
  2172. RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
  2173. map = rtw_zmalloc(mapLen);
  2174. if (map == NULL)
  2175. return _FAIL;
  2176. ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map);
  2177. if (ret == _FAIL)
  2178. goto exit;
  2179. RTW_INFO("OFFSET\tVALUE(hex)\n");
  2180. for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
  2181. RTW_INFO("0x%03x\t", i);
  2182. for (j = 0; j < 8; j++)
  2183. RTW_INFO("%02X ", map[i + j]);
  2184. RTW_INFO("\t");
  2185. for (; j < 16; j++)
  2186. RTW_INFO("%02X ", map[i + j]);
  2187. RTW_INFO("\n");
  2188. }
  2189. RTW_INFO("\n");
  2190. Efuse_PowerSwitch(padapter, _TRUE, _TRUE);
  2191. idx = 0;
  2192. offset = (addr >> 3);
  2193. while (idx < cnts) {
  2194. word_en = 0xF;
  2195. j = (addr + idx) & 0x7;
  2196. _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
  2197. for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
  2198. if (data[idx] != map[addr + idx]) {
  2199. word_en &= ~BIT(i >> 1);
  2200. newdata[i] = data[idx];
  2201. }
  2202. }
  2203. if (word_en != 0xF) {
  2204. RTW_INFO("offset=%x\n", offset);
  2205. RTW_INFO("word_en=%x\n", word_en);
  2206. RTW_INFO("%s: data=", __FUNCTION__);
  2207. for (i = 0; i < PGPKT_DATA_SIZE; i++)
  2208. RTW_INFO("0x%02X ", newdata[i]);
  2209. RTW_INFO("\n");
  2210. ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE);
  2211. if (ret == _FAIL)
  2212. break;
  2213. }
  2214. offset++;
  2215. }
  2216. Efuse_PowerSwitch(padapter, _TRUE, _FALSE);
  2217. exit:
  2218. rtw_mfree(map, mapLen);
  2219. return ret;
  2220. }
  2221. /*-----------------------------------------------------------------------------
  2222. * Function: Efuse_ReadAllMap
  2223. *
  2224. * Overview: Read All Efuse content
  2225. *
  2226. * Input: NONE
  2227. *
  2228. * Output: NONE
  2229. *
  2230. * Return: NONE
  2231. *
  2232. * Revised History:
  2233. * When Who Remark
  2234. * 11/11/2008 MHC Create Version 0.
  2235. *
  2236. *---------------------------------------------------------------------------*/
  2237. VOID
  2238. Efuse_ReadAllMap(
  2239. IN PADAPTER pAdapter,
  2240. IN u8 efuseType,
  2241. IN OUT u8 *Efuse,
  2242. IN BOOLEAN bPseudoTest);
  2243. VOID
  2244. Efuse_ReadAllMap(
  2245. IN PADAPTER pAdapter,
  2246. IN u8 efuseType,
  2247. IN OUT u8 *Efuse,
  2248. IN BOOLEAN bPseudoTest)
  2249. {
  2250. u16 mapLen = 0;
  2251. Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE);
  2252. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  2253. efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest);
  2254. Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE);
  2255. }
  2256. /*-----------------------------------------------------------------------------
  2257. * Function: efuse_ShadowWrite1Byte
  2258. * efuse_ShadowWrite2Byte
  2259. * efuse_ShadowWrite4Byte
  2260. *
  2261. * Overview: Write efuse modify map by one/two/four byte.
  2262. *
  2263. * Input: NONE
  2264. *
  2265. * Output: NONE
  2266. *
  2267. * Return: NONE
  2268. *
  2269. * Revised History:
  2270. * When Who Remark
  2271. * 11/12/2008 MHC Create Version 0.
  2272. *
  2273. *---------------------------------------------------------------------------*/
  2274. #ifdef PLATFORM
  2275. static VOID
  2276. efuse_ShadowWrite1Byte(
  2277. IN PADAPTER pAdapter,
  2278. IN u16 Offset,
  2279. IN u8 Value);
  2280. #endif /* PLATFORM */
  2281. static VOID
  2282. efuse_ShadowWrite1Byte(
  2283. IN PADAPTER pAdapter,
  2284. IN u16 Offset,
  2285. IN u8 Value)
  2286. {
  2287. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2288. pHalData->efuse_eeprom_data[Offset] = Value;
  2289. } /* efuse_ShadowWrite1Byte */
  2290. /* ---------------Write Two Bytes */
  2291. static VOID
  2292. efuse_ShadowWrite2Byte(
  2293. IN PADAPTER pAdapter,
  2294. IN u16 Offset,
  2295. IN u16 Value)
  2296. {
  2297. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2298. pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF;
  2299. pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8;
  2300. } /* efuse_ShadowWrite1Byte */
  2301. /* ---------------Write Four Bytes */
  2302. static VOID
  2303. efuse_ShadowWrite4Byte(
  2304. IN PADAPTER pAdapter,
  2305. IN u16 Offset,
  2306. IN u32 Value)
  2307. {
  2308. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2309. pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF);
  2310. pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF);
  2311. pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF);
  2312. pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF);
  2313. } /* efuse_ShadowWrite1Byte */
  2314. /*-----------------------------------------------------------------------------
  2315. * Function: EFUSE_ShadowWrite
  2316. *
  2317. * Overview: Write efuse modify map for later update operation to use!!!!!
  2318. *
  2319. * Input: NONE
  2320. *
  2321. * Output: NONE
  2322. *
  2323. * Return: NONE
  2324. *
  2325. * Revised History:
  2326. * When Who Remark
  2327. * 11/12/2008 MHC Create Version 0.
  2328. *
  2329. *---------------------------------------------------------------------------*/
  2330. VOID
  2331. EFUSE_ShadowWrite(
  2332. IN PADAPTER pAdapter,
  2333. IN u8 Type,
  2334. IN u16 Offset,
  2335. IN OUT u32 Value);
  2336. VOID
  2337. EFUSE_ShadowWrite(
  2338. IN PADAPTER pAdapter,
  2339. IN u8 Type,
  2340. IN u16 Offset,
  2341. IN OUT u32 Value)
  2342. {
  2343. #if (MP_DRIVER == 0)
  2344. return;
  2345. #endif
  2346. if (pAdapter->registrypriv.mp_mode == 0)
  2347. return;
  2348. if (Type == 1)
  2349. efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value);
  2350. else if (Type == 2)
  2351. efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value);
  2352. else if (Type == 4)
  2353. efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value);
  2354. } /* EFUSE_ShadowWrite */
  2355. VOID
  2356. Efuse_InitSomeVar(
  2357. IN PADAPTER pAdapter
  2358. );
  2359. VOID
  2360. Efuse_InitSomeVar(
  2361. IN PADAPTER pAdapter
  2362. )
  2363. {
  2364. u8 i;
  2365. _rtw_memset((PVOID)&fakeEfuseContent[0], 0xff, EFUSE_MAX_HW_SIZE);
  2366. _rtw_memset((PVOID)&fakeEfuseInitMap[0], 0xff, EFUSE_MAX_MAP_LEN);
  2367. _rtw_memset((PVOID)&fakeEfuseModifiedMap[0], 0xff, EFUSE_MAX_MAP_LEN);
  2368. for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
  2369. _rtw_memset((PVOID)&BTEfuseContent[i][0], EFUSE_MAX_HW_SIZE, 0xff);
  2370. _rtw_memset((PVOID)&BTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2371. _rtw_memset((PVOID)&BTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2372. for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
  2373. _rtw_memset((PVOID)&fakeBTEfuseContent[i][0], 0xff, EFUSE_MAX_HW_SIZE);
  2374. _rtw_memset((PVOID)&fakeBTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2375. _rtw_memset((PVOID)&fakeBTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
  2376. }
  2377. #endif /* !RTW_HALMAC */
  2378. /*-----------------------------------------------------------------------------
  2379. * Function: efuse_ShadowRead1Byte
  2380. * efuse_ShadowRead2Byte
  2381. * efuse_ShadowRead4Byte
  2382. *
  2383. * Overview: Read from efuse init map by one/two/four bytes !!!!!
  2384. *
  2385. * Input: NONE
  2386. *
  2387. * Output: NONE
  2388. *
  2389. * Return: NONE
  2390. *
  2391. * Revised History:
  2392. * When Who Remark
  2393. * 11/12/2008 MHC Create Version 0.
  2394. *
  2395. *---------------------------------------------------------------------------*/
  2396. static VOID
  2397. efuse_ShadowRead1Byte(
  2398. IN PADAPTER pAdapter,
  2399. IN u16 Offset,
  2400. IN OUT u8 *Value)
  2401. {
  2402. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2403. *Value = pHalData->efuse_eeprom_data[Offset];
  2404. } /* EFUSE_ShadowRead1Byte */
  2405. /* ---------------Read Two Bytes */
  2406. static VOID
  2407. efuse_ShadowRead2Byte(
  2408. IN PADAPTER pAdapter,
  2409. IN u16 Offset,
  2410. IN OUT u16 *Value)
  2411. {
  2412. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2413. *Value = pHalData->efuse_eeprom_data[Offset];
  2414. *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
  2415. } /* EFUSE_ShadowRead2Byte */
  2416. /* ---------------Read Four Bytes */
  2417. static VOID
  2418. efuse_ShadowRead4Byte(
  2419. IN PADAPTER pAdapter,
  2420. IN u16 Offset,
  2421. IN OUT u32 *Value)
  2422. {
  2423. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2424. *Value = pHalData->efuse_eeprom_data[Offset];
  2425. *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
  2426. *Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16;
  2427. *Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24;
  2428. } /* efuse_ShadowRead4Byte */
  2429. /*-----------------------------------------------------------------------------
  2430. * Function: EFUSE_ShadowRead
  2431. *
  2432. * Overview: Read from pHalData->efuse_eeprom_data
  2433. *---------------------------------------------------------------------------*/
  2434. void
  2435. EFUSE_ShadowRead(
  2436. IN PADAPTER pAdapter,
  2437. IN u8 Type,
  2438. IN u16 Offset,
  2439. IN OUT u32 *Value)
  2440. {
  2441. if (Type == 1)
  2442. efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value);
  2443. else if (Type == 2)
  2444. efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value);
  2445. else if (Type == 4)
  2446. efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value);
  2447. } /* EFUSE_ShadowRead */
  2448. /* 11/16/2008 MH Add description. Get current efuse area enabled word!!. */
  2449. u8
  2450. Efuse_CalculateWordCnts(IN u8 word_en)
  2451. {
  2452. u8 word_cnts = 0;
  2453. if (!(word_en & BIT(0)))
  2454. word_cnts++; /* 0 : write enable */
  2455. if (!(word_en & BIT(1)))
  2456. word_cnts++;
  2457. if (!(word_en & BIT(2)))
  2458. word_cnts++;
  2459. if (!(word_en & BIT(3)))
  2460. word_cnts++;
  2461. return word_cnts;
  2462. }
  2463. /*-----------------------------------------------------------------------------
  2464. * Function: efuse_WordEnableDataRead
  2465. *
  2466. * Overview: Read allowed word in current efuse section data.
  2467. *
  2468. * Input: NONE
  2469. *
  2470. * Output: NONE
  2471. *
  2472. * Return: NONE
  2473. *
  2474. * Revised History:
  2475. * When Who Remark
  2476. * 11/16/2008 MHC Create Version 0.
  2477. * 11/21/2008 MHC Fix Write bug when we only enable late word.
  2478. *
  2479. *---------------------------------------------------------------------------*/
  2480. void
  2481. efuse_WordEnableDataRead(IN u8 word_en,
  2482. IN u8 *sourdata,
  2483. IN u8 *targetdata)
  2484. {
  2485. if (!(word_en & BIT(0))) {
  2486. targetdata[0] = sourdata[0];
  2487. targetdata[1] = sourdata[1];
  2488. }
  2489. if (!(word_en & BIT(1))) {
  2490. targetdata[2] = sourdata[2];
  2491. targetdata[3] = sourdata[3];
  2492. }
  2493. if (!(word_en & BIT(2))) {
  2494. targetdata[4] = sourdata[4];
  2495. targetdata[5] = sourdata[5];
  2496. }
  2497. if (!(word_en & BIT(3))) {
  2498. targetdata[6] = sourdata[6];
  2499. targetdata[7] = sourdata[7];
  2500. }
  2501. }
  2502. /*-----------------------------------------------------------------------------
  2503. * Function: EFUSE_ShadowMapUpdate
  2504. *
  2505. * Overview: Transfer current EFUSE content to shadow init and modify map.
  2506. *
  2507. * Input: NONE
  2508. *
  2509. * Output: NONE
  2510. *
  2511. * Return: NONE
  2512. *
  2513. * Revised History:
  2514. * When Who Remark
  2515. * 11/13/2008 MHC Create Version 0.
  2516. *
  2517. *---------------------------------------------------------------------------*/
  2518. void EFUSE_ShadowMapUpdate(
  2519. IN PADAPTER pAdapter,
  2520. IN u8 efuseType,
  2521. IN BOOLEAN bPseudoTest)
  2522. {
  2523. PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
  2524. u16 mapLen = 0;
  2525. #ifdef RTW_HALMAC
  2526. u8 *efuse_map = NULL;
  2527. int err;
  2528. mapLen = EEPROM_MAX_SIZE;
  2529. efuse_map = pHalData->efuse_eeprom_data;
  2530. /* efuse default content is 0xFF */
  2531. _rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE);
  2532. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  2533. if (!mapLen) {
  2534. RTW_WARN("%s: <ERROR> fail to get efuse size!\n", __FUNCTION__);
  2535. mapLen = EEPROM_MAX_SIZE;
  2536. }
  2537. if (mapLen > EEPROM_MAX_SIZE) {
  2538. RTW_WARN("%s: <ERROR> size of efuse data(%d) is large than expected(%d)!\n",
  2539. __FUNCTION__, mapLen, EEPROM_MAX_SIZE);
  2540. mapLen = EEPROM_MAX_SIZE;
  2541. }
  2542. if (pHalData->bautoload_fail_flag == _FALSE) {
  2543. err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen, NULL, 0);
  2544. if (err)
  2545. RTW_ERR("%s: <ERROR> fail to get efuse map!\n", __FUNCTION__);
  2546. }
  2547. #else /* !RTW_HALMAC */
  2548. EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
  2549. if (pHalData->bautoload_fail_flag == _TRUE)
  2550. _rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen);
  2551. else {
  2552. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2553. if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) {
  2554. #endif
  2555. Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest);
  2556. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2557. storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data);
  2558. }
  2559. #endif
  2560. }
  2561. /* PlatformMoveMemory((PVOID)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */
  2562. /* (PVOID)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */
  2563. #endif /* !RTW_HALMAC */
  2564. rtw_mask_map_read(pAdapter, 0x00, mapLen, pHalData->efuse_eeprom_data);
  2565. rtw_dump_cur_efuse(pAdapter);
  2566. } /* EFUSE_ShadowMapUpdate */
  2567. const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = {
  2568. 0,
  2569. 0,
  2570. (BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2571. (BW_CAP_5M),
  2572. (BW_CAP_10M | BW_CAP_5M),
  2573. (BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2574. (BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2575. (BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
  2576. };
  2577. const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = {
  2578. 0,
  2579. 0,
  2580. (PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
  2581. (PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
  2582. };
  2583. u8 mac_hidden_wl_func_to_hal_wl_func(u8 func)
  2584. {
  2585. u8 wl_func = 0;
  2586. if (func & BIT0)
  2587. wl_func |= WL_FUNC_MIRACAST;
  2588. if (func & BIT1)
  2589. wl_func |= WL_FUNC_P2P;
  2590. if (func & BIT2)
  2591. wl_func |= WL_FUNC_TDLS;
  2592. if (func & BIT3)
  2593. wl_func |= WL_FUNC_FTM;
  2594. return wl_func;
  2595. }
  2596. #ifdef PLATFORM_LINUX
  2597. #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
  2598. /* #include <rtw_eeprom.h> */
  2599. int isAdaptorInfoFileValid(void)
  2600. {
  2601. return _TRUE;
  2602. }
  2603. int storeAdaptorInfoFile(char *path, u8 *efuse_data)
  2604. {
  2605. int ret = _SUCCESS;
  2606. if (path && efuse_data) {
  2607. ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512);
  2608. if (ret == EEPROM_MAX_SIZE)
  2609. ret = _SUCCESS;
  2610. else
  2611. ret = _FAIL;
  2612. } else {
  2613. RTW_INFO("%s NULL pointer\n", __FUNCTION__);
  2614. ret = _FAIL;
  2615. }
  2616. return ret;
  2617. }
  2618. int retriveAdaptorInfoFile(char *path, u8 *efuse_data)
  2619. {
  2620. int ret = _SUCCESS;
  2621. mm_segment_t oldfs;
  2622. struct file *fp;
  2623. if (path && efuse_data) {
  2624. ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE);
  2625. if (ret == EEPROM_MAX_SIZE)
  2626. ret = _SUCCESS;
  2627. else
  2628. ret = _FAIL;
  2629. #if 0
  2630. if (isAdaptorInfoFileValid())
  2631. return 0;
  2632. else
  2633. return _FAIL;
  2634. #endif
  2635. } else {
  2636. RTW_INFO("%s NULL pointer\n", __FUNCTION__);
  2637. ret = _FAIL;
  2638. }
  2639. return ret;
  2640. }
  2641. #endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
  2642. u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepatch, u8 *buf, u32 len)
  2643. {
  2644. char *ptmpbuf = NULL, *ptr;
  2645. u8 val8;
  2646. u32 count, i, j;
  2647. int err;
  2648. u32 bufsize = 4096;
  2649. ptmpbuf = rtw_zmalloc(bufsize);
  2650. if (ptmpbuf == NULL)
  2651. return _FALSE;
  2652. count = rtw_retrieve_from_file(filepatch, ptmpbuf, bufsize);
  2653. if (count <= 90) {
  2654. rtw_mfree(ptmpbuf, bufsize);
  2655. RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepatch, count);
  2656. return _FALSE;
  2657. }
  2658. i = 0;
  2659. j = 0;
  2660. ptr = ptmpbuf;
  2661. while ((j < len) && (i < count)) {
  2662. if (ptmpbuf[i] == '\0')
  2663. break;
  2664. ptr = strpbrk(&ptmpbuf[i], " \t\n\r");
  2665. if (ptr) {
  2666. if (ptr == &ptmpbuf[i]) {
  2667. i++;
  2668. continue;
  2669. }
  2670. /* Add string terminating null */
  2671. *ptr = 0;
  2672. } else {
  2673. ptr = &ptmpbuf[count-1];
  2674. }
  2675. err = sscanf(&ptmpbuf[i], "%hhx", &val8);
  2676. if (err != 1) {
  2677. RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]);
  2678. } else {
  2679. buf[j] = val8;
  2680. RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]);
  2681. j++;
  2682. }
  2683. i = ptr - ptmpbuf + 1;
  2684. }
  2685. rtw_mfree(ptmpbuf, bufsize);
  2686. RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepatch, count);
  2687. return _TRUE;
  2688. }
  2689. #ifdef CONFIG_EFUSE_CONFIG_FILE
  2690. u32 rtw_read_efuse_from_file(const char *path, u8 *buf, int map_size)
  2691. {
  2692. u32 i;
  2693. u8 c;
  2694. u8 temp[3];
  2695. u8 temp_i;
  2696. u8 end = _FALSE;
  2697. u32 ret = _FAIL;
  2698. u8 *file_data = NULL;
  2699. u32 file_size, read_size, pos = 0;
  2700. u8 *map = NULL;
  2701. if (rtw_is_file_readable_with_size(path, &file_size) != _TRUE) {
  2702. RTW_PRINT("%s %s is not readable\n", __func__, path);
  2703. goto exit;
  2704. }
  2705. file_data = rtw_vmalloc(file_size);
  2706. if (!file_data) {
  2707. RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, file_size);
  2708. goto exit;
  2709. }
  2710. read_size = rtw_retrieve_from_file(path, file_data, file_size);
  2711. if (read_size == 0) {
  2712. RTW_ERR("%s read from %s fail\n", __func__, path);
  2713. goto exit;
  2714. }
  2715. map = rtw_vmalloc(map_size);
  2716. if (!map) {
  2717. RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, map_size);
  2718. goto exit;
  2719. }
  2720. _rtw_memset(map, 0xff, map_size);
  2721. temp[2] = 0; /* end of string '\0' */
  2722. for (i = 0 ; i < map_size ; i++) {
  2723. temp_i = 0;
  2724. while (1) {
  2725. if (pos >= read_size) {
  2726. end = _TRUE;
  2727. break;
  2728. }
  2729. c = file_data[pos++];
  2730. /* bypass spece or eol or null before first hex digit */
  2731. if (temp_i == 0 && (is_eol(c) == _TRUE || is_space(c) == _TRUE || is_null(c) == _TRUE))
  2732. continue;
  2733. if (IsHexDigit(c) == _FALSE) {
  2734. RTW_ERR("%s invalid 8-bit hex format for offset:0x%03x\n", __func__, i);
  2735. goto exit;
  2736. }
  2737. temp[temp_i++] = c;
  2738. if (temp_i == 2) {
  2739. /* parse value */
  2740. if (sscanf(temp, "%hhx", &map[i]) != 1) {
  2741. RTW_ERR("%s sscanf fail for offset:0x%03x\n", __func__, i);
  2742. goto exit;
  2743. }
  2744. break;
  2745. }
  2746. }
  2747. if (end == _TRUE) {
  2748. if (temp_i != 0) {
  2749. RTW_ERR("%s incomplete 8-bit hex format for offset:0x%03x\n", __func__, i);
  2750. goto exit;
  2751. }
  2752. break;
  2753. }
  2754. }
  2755. RTW_PRINT("efuse file:%s, 0x%03x byte content read\n", path, i);
  2756. _rtw_memcpy(buf, map, map_size);
  2757. ret = _SUCCESS;
  2758. exit:
  2759. if (file_data)
  2760. rtw_vmfree(file_data, file_size);
  2761. if (map)
  2762. rtw_vmfree(map, map_size);
  2763. return ret;
  2764. }
  2765. u32 rtw_read_macaddr_from_file(const char *path, u8 *buf)
  2766. {
  2767. u32 i;
  2768. u8 temp[3];
  2769. u32 ret = _FAIL;
  2770. u8 file_data[17];
  2771. u32 read_size, pos = 0;
  2772. u8 addr[ETH_ALEN];
  2773. if (rtw_is_file_readable(path) != _TRUE) {
  2774. RTW_PRINT("%s %s is not readable\n", __func__, path);
  2775. goto exit;
  2776. }
  2777. read_size = rtw_retrieve_from_file(path, file_data, 17);
  2778. if (read_size != 17) {
  2779. RTW_ERR("%s read from %s fail\n", __func__, path);
  2780. goto exit;
  2781. }
  2782. temp[2] = 0; /* end of string '\0' */
  2783. for (i = 0 ; i < ETH_ALEN ; i++) {
  2784. if (IsHexDigit(file_data[i * 3]) == _FALSE || IsHexDigit(file_data[i * 3 + 1]) == _FALSE) {
  2785. RTW_ERR("%s invalid 8-bit hex format for address offset:%u\n", __func__, i);
  2786. goto exit;
  2787. }
  2788. if (i < ETH_ALEN - 1 && file_data[i * 3 + 2] != ':') {
  2789. RTW_ERR("%s invalid separator after address offset:%u\n", __func__, i);
  2790. goto exit;
  2791. }
  2792. temp[0] = file_data[i * 3];
  2793. temp[1] = file_data[i * 3 + 1];
  2794. if (sscanf(temp, "%hhx", &addr[i]) != 1) {
  2795. RTW_ERR("%s sscanf fail for address offset:0x%03x\n", __func__, i);
  2796. goto exit;
  2797. }
  2798. }
  2799. _rtw_memcpy(buf, addr, ETH_ALEN);
  2800. RTW_PRINT("wifi_mac file: %s\n", path);
  2801. #ifdef CONFIG_RTW_DEBUG
  2802. RTW_INFO(MAC_FMT"\n", MAC_ARG(buf));
  2803. #endif
  2804. ret = _SUCCESS;
  2805. exit:
  2806. return ret;
  2807. }
  2808. #endif /* CONFIG_EFUSE_CONFIG_FILE */
  2809. #endif /* PLATFORM_LINUX */