Browse Source

YOLOv8导出onnx模型并NMS过滤结果

zhzhenqin 5 months ago
parent
commit
4c307ef619
1 changed files with 191 additions and 0 deletions
  1. 191 0
      yolo_model_nms_export.py

+ 191 - 0
yolo_model_nms_export.py

@@ -0,0 +1,191 @@
+#!/usr/bin/env python
+# -*- coding:utf-8 -*-
+
+import time
+import cv2
+import numpy as np
+import onnxruntime
+
+class YOLOv8:
+
+    def __init__(self, path, conf_thres=0.7, iou_thres=0.7):
+        self.conf_threshold = conf_thres
+        self.iou_threshold = iou_thres
+
+        # Initialize model
+        self.initialize_model(path)
+
+    def __call__(self, image):
+        return self.detect_objects(image)
+
+    def initialize_model(self, path):
+        self.session = onnxruntime.InferenceSession(path,providers=['CUDAExecutionProvider','CPUExecutionProvider'])
+        # Get model info
+        self.get_input_details()
+        self.get_output_details()
+
+
+    def detect_objects(self, image):
+        input_tensor,ratio = self.prepare_input(image)
+
+        # Perform inference on the image
+        outputs = self.inference(input_tensor)
+
+        self.boxes, self.scores, self.class_ids = self.process_output(outputs,ratio)
+
+        return self.boxes, self.scores, self.class_ids
+
+    def prepare_input(self, image):
+        self.img_height, self.img_width = image.shape[:2]
+
+        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+
+        # Resize图片不要直接使用resize,需要按比例缩放,空白区域填空纯色即可
+        input_img,ratio = self.ratioresize(input_img)
+
+        # Scale input pixel values to 0 to 1
+        input_img = input_img / 255.0
+        input_img = input_img.transpose(2, 0, 1)
+        input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
+
+        return input_tensor,ratio
+
+
+    def inference(self, input_tensor):
+        start = time.perf_counter()
+        outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
+
+        # print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
+        return outputs
+
+    def process_output(self, output,ratio):
+        predictions = np.squeeze(output[0]).T
+
+        # Filter out object confidence scores below threshold
+        scores = np.max(predictions[:, 4:], axis=1)
+        predictions = predictions[scores > self.conf_threshold, :]
+        scores = scores[scores > self.conf_threshold]
+
+        if len(scores) == 0:
+            return [], [], []
+
+        # Get the class with the highest confidence
+        class_ids = np.argmax(predictions[:, 4:], axis=1)
+
+        # Get bounding boxes for each object
+        boxes = self.extract_boxes(predictions,ratio)
+
+        # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
+        indices = self.nms(boxes, scores, self.iou_threshold)
+
+        return boxes[indices], scores[indices], class_ids[indices]
+
+    def extract_boxes(self, predictions,ratio):
+        # Extract boxes from predictions
+        boxes = predictions[:, :4]
+
+        # Scale boxes to original image dimensions
+        # boxes = self.rescale_boxes(boxes)
+        boxes *= ratio
+
+        # Convert boxes to xyxy format
+        boxes = self.xywh2xyxy(boxes)
+
+        return boxes
+
+    def rescale_boxes(self, boxes):
+
+        # Rescale boxes to original image dimensions
+        
+        input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
+        boxes = np.divide(boxes, input_shape, dtype=np.float32)
+        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
+        
+        return boxes
+
+    def get_input_details(self):
+        model_inputs = self.session.get_inputs()
+        self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
+
+        self.input_shape = model_inputs[0].shape
+        self.input_height = self.input_shape[2]
+        self.input_width = self.input_shape[3]
+
+    def get_output_details(self):
+        model_outputs = self.session.get_outputs()
+        self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
+
+    #等比例缩放图片
+    def ratioresize(self,im,  color=114):
+        shape = im.shape[:2] 
+        new_h, new_w = self.input_height, self.input_width
+        padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color
+    
+        # Scale ratio (new / old)
+        r = min(new_h / shape[0], new_w / shape[1])
+    
+        # Compute padding
+        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+    
+        if shape[::-1] != new_unpad:
+            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+        
+        padded_img[: new_unpad[1], : new_unpad[0]] = im
+        padded_img = np.ascontiguousarray(padded_img)
+        return padded_img, 1 / r
+
+    def nms(self, boxes, scores, iou_threshold):
+        # Sort by score
+        sorted_indices = np.argsort(scores)[::-1]
+    
+        keep_boxes = []
+        while sorted_indices.size > 0:
+            # Pick the last box
+            box_id = sorted_indices[0]
+            keep_boxes.append(box_id)
+    
+            # Compute IoU of the picked box with the rest
+            ious = self.compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
+    
+            # Remove boxes with IoU over the threshold
+            keep_indices = np.where(ious < iou_threshold)[0]
+    
+            # print(keep_indices.shape, sorted_indices.shape)
+            sorted_indices = sorted_indices[keep_indices + 1]
+    
+        return keep_boxes
+       
+    def compute_iou(self, box, boxes):
+        # Compute xmin, ymin, xmax, ymax for both boxes
+        xmin = np.maximum(box[0], boxes[:, 0])
+        ymin = np.maximum(box[1], boxes[:, 1])
+        xmax = np.minimum(box[2], boxes[:, 2])
+        ymax = np.minimum(box[3], boxes[:, 3])
+    
+        # Compute intersection area
+        intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
+    
+        # Compute union area
+        box_area = (box[2] - box[0]) * (box[3] - box[1])
+        boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
+        union_area = box_area + boxes_area - intersection_area
+    
+        # Compute IoU
+        iou = intersection_area / union_area
+    
+        return iou
+    
+    def xywh2xyxy(self, x):
+        # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
+        y = np.copy(x)
+        y[..., 0] = x[..., 0] - x[..., 2] / 2
+        y[..., 1] = x[..., 1] - x[..., 3] / 2
+        y[..., 2] = x[..., 0] + x[..., 2] / 2
+        y[..., 3] = x[..., 1] + x[..., 3] / 2
+        return y
+
+if __name__ == "__main__":
+    yolov8_detector = YOLOv8(model_path, conf_thres=0.7, iou_thres=0.7)
+    image = cv2.imread()
+    boxes, scores, class_ids = yolov8_detector(image)
+    print(boxes, scores, class_ids)