|
@@ -0,0 +1,191 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding:utf-8 -*-
|
|
|
+
|
|
|
+import time
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import onnxruntime
|
|
|
+
|
|
|
+class YOLOv8:
|
|
|
+
|
|
|
+ def __init__(self, path, conf_thres=0.7, iou_thres=0.7):
|
|
|
+ self.conf_threshold = conf_thres
|
|
|
+ self.iou_threshold = iou_thres
|
|
|
+
|
|
|
+ # Initialize model
|
|
|
+ self.initialize_model(path)
|
|
|
+
|
|
|
+ def __call__(self, image):
|
|
|
+ return self.detect_objects(image)
|
|
|
+
|
|
|
+ def initialize_model(self, path):
|
|
|
+ self.session = onnxruntime.InferenceSession(path,providers=['CUDAExecutionProvider','CPUExecutionProvider'])
|
|
|
+ # Get model info
|
|
|
+ self.get_input_details()
|
|
|
+ self.get_output_details()
|
|
|
+
|
|
|
+
|
|
|
+ def detect_objects(self, image):
|
|
|
+ input_tensor,ratio = self.prepare_input(image)
|
|
|
+
|
|
|
+ # Perform inference on the image
|
|
|
+ outputs = self.inference(input_tensor)
|
|
|
+
|
|
|
+ self.boxes, self.scores, self.class_ids = self.process_output(outputs,ratio)
|
|
|
+
|
|
|
+ return self.boxes, self.scores, self.class_ids
|
|
|
+
|
|
|
+ def prepare_input(self, image):
|
|
|
+ self.img_height, self.img_width = image.shape[:2]
|
|
|
+
|
|
|
+ input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
+
|
|
|
+ # Resize图片不要直接使用resize,需要按比例缩放,空白区域填空纯色即可
|
|
|
+ input_img,ratio = self.ratioresize(input_img)
|
|
|
+
|
|
|
+ # Scale input pixel values to 0 to 1
|
|
|
+ input_img = input_img / 255.0
|
|
|
+ input_img = input_img.transpose(2, 0, 1)
|
|
|
+ input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
|
|
+
|
|
|
+ return input_tensor,ratio
|
|
|
+
|
|
|
+
|
|
|
+ def inference(self, input_tensor):
|
|
|
+ start = time.perf_counter()
|
|
|
+ outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
|
|
|
+
|
|
|
+ # print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
|
|
+ return outputs
|
|
|
+
|
|
|
+ def process_output(self, output,ratio):
|
|
|
+ predictions = np.squeeze(output[0]).T
|
|
|
+
|
|
|
+ # Filter out object confidence scores below threshold
|
|
|
+ scores = np.max(predictions[:, 4:], axis=1)
|
|
|
+ predictions = predictions[scores > self.conf_threshold, :]
|
|
|
+ scores = scores[scores > self.conf_threshold]
|
|
|
+
|
|
|
+ if len(scores) == 0:
|
|
|
+ return [], [], []
|
|
|
+
|
|
|
+ # Get the class with the highest confidence
|
|
|
+ class_ids = np.argmax(predictions[:, 4:], axis=1)
|
|
|
+
|
|
|
+ # Get bounding boxes for each object
|
|
|
+ boxes = self.extract_boxes(predictions,ratio)
|
|
|
+
|
|
|
+ # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
|
|
+ indices = self.nms(boxes, scores, self.iou_threshold)
|
|
|
+
|
|
|
+ return boxes[indices], scores[indices], class_ids[indices]
|
|
|
+
|
|
|
+ def extract_boxes(self, predictions,ratio):
|
|
|
+ # Extract boxes from predictions
|
|
|
+ boxes = predictions[:, :4]
|
|
|
+
|
|
|
+ # Scale boxes to original image dimensions
|
|
|
+ # boxes = self.rescale_boxes(boxes)
|
|
|
+ boxes *= ratio
|
|
|
+
|
|
|
+ # Convert boxes to xyxy format
|
|
|
+ boxes = self.xywh2xyxy(boxes)
|
|
|
+
|
|
|
+ return boxes
|
|
|
+
|
|
|
+ def rescale_boxes(self, boxes):
|
|
|
+
|
|
|
+ # Rescale boxes to original image dimensions
|
|
|
+
|
|
|
+ input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
|
|
|
+ boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
|
|
+ boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
|
|
|
+
|
|
|
+ return boxes
|
|
|
+
|
|
|
+ def get_input_details(self):
|
|
|
+ model_inputs = self.session.get_inputs()
|
|
|
+ self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
|
|
+
|
|
|
+ self.input_shape = model_inputs[0].shape
|
|
|
+ self.input_height = self.input_shape[2]
|
|
|
+ self.input_width = self.input_shape[3]
|
|
|
+
|
|
|
+ def get_output_details(self):
|
|
|
+ model_outputs = self.session.get_outputs()
|
|
|
+ self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
|
|
+
|
|
|
+ #等比例缩放图片
|
|
|
+ def ratioresize(self,im, color=114):
|
|
|
+ shape = im.shape[:2]
|
|
|
+ new_h, new_w = self.input_height, self.input_width
|
|
|
+ padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color
|
|
|
+
|
|
|
+ # Scale ratio (new / old)
|
|
|
+ r = min(new_h / shape[0], new_w / shape[1])
|
|
|
+
|
|
|
+ # Compute padding
|
|
|
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
|
+
|
|
|
+ if shape[::-1] != new_unpad:
|
|
|
+ im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
+
|
|
|
+ padded_img[: new_unpad[1], : new_unpad[0]] = im
|
|
|
+ padded_img = np.ascontiguousarray(padded_img)
|
|
|
+ return padded_img, 1 / r
|
|
|
+
|
|
|
+ def nms(self, boxes, scores, iou_threshold):
|
|
|
+ # Sort by score
|
|
|
+ sorted_indices = np.argsort(scores)[::-1]
|
|
|
+
|
|
|
+ keep_boxes = []
|
|
|
+ while sorted_indices.size > 0:
|
|
|
+ # Pick the last box
|
|
|
+ box_id = sorted_indices[0]
|
|
|
+ keep_boxes.append(box_id)
|
|
|
+
|
|
|
+ # Compute IoU of the picked box with the rest
|
|
|
+ ious = self.compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
|
|
+
|
|
|
+ # Remove boxes with IoU over the threshold
|
|
|
+ keep_indices = np.where(ious < iou_threshold)[0]
|
|
|
+
|
|
|
+ # print(keep_indices.shape, sorted_indices.shape)
|
|
|
+ sorted_indices = sorted_indices[keep_indices + 1]
|
|
|
+
|
|
|
+ return keep_boxes
|
|
|
+
|
|
|
+ def compute_iou(self, box, boxes):
|
|
|
+ # Compute xmin, ymin, xmax, ymax for both boxes
|
|
|
+ xmin = np.maximum(box[0], boxes[:, 0])
|
|
|
+ ymin = np.maximum(box[1], boxes[:, 1])
|
|
|
+ xmax = np.minimum(box[2], boxes[:, 2])
|
|
|
+ ymax = np.minimum(box[3], boxes[:, 3])
|
|
|
+
|
|
|
+ # Compute intersection area
|
|
|
+ intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
|
|
+
|
|
|
+ # Compute union area
|
|
|
+ box_area = (box[2] - box[0]) * (box[3] - box[1])
|
|
|
+ boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
|
|
+ union_area = box_area + boxes_area - intersection_area
|
|
|
+
|
|
|
+ # Compute IoU
|
|
|
+ iou = intersection_area / union_area
|
|
|
+
|
|
|
+ return iou
|
|
|
+
|
|
|
+ def xywh2xyxy(self, x):
|
|
|
+ # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
|
|
+ y = np.copy(x)
|
|
|
+ y[..., 0] = x[..., 0] - x[..., 2] / 2
|
|
|
+ y[..., 1] = x[..., 1] - x[..., 3] / 2
|
|
|
+ y[..., 2] = x[..., 0] + x[..., 2] / 2
|
|
|
+ y[..., 3] = x[..., 1] + x[..., 3] / 2
|
|
|
+ return y
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ yolov8_detector = YOLOv8(model_path, conf_thres=0.7, iou_thres=0.7)
|
|
|
+ image = cv2.imread()
|
|
|
+ boxes, scores, class_ids = yolov8_detector(image)
|
|
|
+ print(boxes, scores, class_ids)
|